Neurochemical Research

, Volume 31, Issue 3, pp 321–331 | Cite as

Implementation of X-ray Fluorescence Microscopy for Investigation of Elemental Abnormalities in Amyotrophic Lateral Sclerosis

  • B. Tomik
  • J. Chwiej
  • M. Szczerbowska-BoruchowskaEmail author
  • M. Lankosz
  • S. Wójcik
  • D. Adamek
  • G. Falkenberg
  • S. Bohic
  • A. Simionovici
  • Z. Stegowski
  • A. Szczudlik


The abnormalities of metallochemical reactions may contribute to the pathogenesis of Amyotrophic Lateral Sclerosis (ALS). In the present work, an investigation of the elemental composition of the gray matter, nerve cells and white matter from spinal cord tissues representing three ALS cases and five non-ALS controls was performed. This was done with the use of the synchrotron microbeam X-ray fluorescence technique (micro-SRXRF). The following elements were detected in the tissue sections: P, S, Cl, K, Ca, Fe, Cu, Zn and Br. A higher accumulation of Cl, K, Ca, Zn and Br was observed in the nerve cell bodies than in the surrounding tissue. Contrary to all other elements, Zn accumulation was lower in the white matter areas than in the gray matter ones. The results of quantitative analysis showed that there were no general abnormalities in the elemental accumulation between the ALS and the control group. However, for individual ALS cases such abnormalities were observed for the nerve cells. We also demonstrated differences in the elemental accumulation between the analyzed ALS cases.


ALS Elemental analysis Synchrotron radiation Spinal cord section Nerve cell 



The authors are grateful to the Ministry of Education and Science, State Committee for Scientific Research grant 112/E-356/SPB/DESY/P-05/DWM728/2003–2005 and IHP-Contract HPRI-CT-1999-00040/2001-00140 of the European Commission. Thanks are also due to The European Community-Research Infrastructure Action under FP6 “Structuring the European Research Area” Programme (through the Integrated Infrastructure Initiative “Integrating Activity on Synchrotron and Free Electron Laser Science”) and Experimental grants: HASYLAB II-02–092 and ESRF LS 2111.


  1. 1.
    Menzies FM, Ince PG, Shaw PJ (2002) Mitochondrial involvement in amyotrophic lateral sclerosis. Neurochem Int 40:543–551CrossRefPubMedGoogle Scholar
  2. 2.
    Cassarino DS, Bennett JP (1999) An evaluation of the role of mitochondria in neurodegenerative diseases: mitochondrial mutations and oxidative pathology, protective nuclear responses, and cell death in neurodegeneration. Brain Res Rev 29:1–25PubMedCrossRefGoogle Scholar
  3. 3.
    Bains JS, Shaw CA (1997) Neurodegenerative disorders in humans: the role of glutathione in oxidative stress-mediated neuronal death. Brain Res. Rev 25:335–358CrossRefPubMedGoogle Scholar
  4. 4.
    Carri MT, Ferri A, Cozzolino M, Calabrese L, Rotilio G (2003) Neurodegeneration in amyotrophic lateral sclerosis: the role of oxidative stress and altered homeostasis of metals. Brain Res Bull 61:365–374CrossRefPubMedGoogle Scholar
  5. 5.
    Carri MT, Ferri A, Battistoni A, Famhy L, Gabbianelli R, Poccia F, Rotilio G (1997) Exspression of a Cu, Zn superoxide dismutase typical of familial amyotrophic lateral sclerosis induces mitochondrial alteration and increase of cytosolic Ca2+ concentration in transfected neuroblastoma SH-SY5Y cells. FEBS Lett 414:365–368CrossRefPubMedGoogle Scholar
  6. 6.
    Kruman II, Pedersen WA, Springer JE, Mattson MP (1999) ALS-linked Cu/Zn-SOD mutation increases vulnerability of motor neurons to excitotoxicity by a mechanisms involving increased oxidative stress and perturbed calcium homeostasis. Exp Neurol 160:28–39CrossRefPubMedGoogle Scholar
  7. 7.
    Orrell RW (2000) Amyotrophic lateral sclerosis: copper/zinc superoxide dismutase (SOD1) gene mutations. Neuromuscular Dis 10:63–68CrossRefGoogle Scholar
  8. 8.
    Mitchell JD (2000) Amyotrophic lateral sclerosis: toxins and environment Amyotroph. Lateral Scler Other Motor Neuron Disord 1(4):235–250CrossRefGoogle Scholar
  9. 9.
    Campbell A, Smith MA, Sayre LM, Bondy SC, Perry G (2001) Mechanisms by which metals promote events connected to neurodegenerative diseases. Brain Res Bull 55/2:125–132CrossRefGoogle Scholar
  10. 10.
    Waggoner DJ, Bartnikas TB, Gitlin JD (1999) The role of copper in neurodegenerative disease. Neurobiol Dis 6:221–230CrossRefPubMedGoogle Scholar
  11. 11.
    Bush AI (2000) Metals and neuroscience. Curr Op Chem Biol 4:184–191CrossRefGoogle Scholar
  12. 12.
    Hasnain SS (2004) Synchrotron techniques for metalloproteins and human disease in post genome era. J Synchrotron Radit 1:7–11CrossRefGoogle Scholar
  13. 13.
    Carri MT, Battistoni A, Ferri A (1994) A study of the dual role of copper in superoxide dismutase as antioxidant and pro-oxidant in cellular models of amyotrophic lateral sclerosis. Adv Exp Med Biol 448:205–213Google Scholar
  14. 14.
    Rowland LP, Shneider NA (2001) Amyotrophic lateral sclerosis. N Engl J Med 344(22):1688–1700CrossRefPubMedGoogle Scholar
  15. 15.
    Iida A (2000) Instrumentation for μ-XRF at synchrotron sources. In: Janssens KHA, Adams FCV, Rindby A (eds), Microscopic X-Ray Fluorescence Analysis, John Wiley, Chichester, pp 117–153Google Scholar
  16. 16.
    Bohic S, Simionovici A, Ortega R, Heymann D, Schroer C, Snigirev A (2001) Synchrotron-induced X-ray microfluorescence on single cells. Nucl Instr Meth B 181(1):728–733(6)CrossRefGoogle Scholar
  17. 17.
    Huang YY, Lu JX, He RG, Zhao LM, Wang ZG, He W, Zhang YX (2001) Study of human bone tumor slice by SRXRF microprobe. Nucl Instrum Meth Phys Res A 467–468:1301–1304CrossRefGoogle Scholar
  18. 18.
    Ortega R, Deves G, Fayard B, Salome M, Susini J (2003) Combination of synchrotron radiation X-ray microprobe and nuclear microprobe for chromium and chromium oxidation states quantitative mapping in single cells. Nucl Instrum Meth Phys Res B 210:325–329CrossRefGoogle Scholar
  19. 19.
    Szczerbowska-Boruchowska M, Lankosz M, Ostachowicz J, Adamek D, Krygowska-Wajs A, Tomik B, Szczudlik A, Simionovici A, Bohic S (2004) Topographic and quantitative microanalysis of human central nervous system tissue using synchrotron radiation. X-ray Spectrom 33(1):3–11CrossRefGoogle Scholar
  20. 20.
    Yoshida S, Ektessabi A, Fujisawa S (2001) XAFS spectroscopy of a single neuron from a patient with Parkinson’s disease. J Synchrotron Radiat 8:998–1000CrossRefPubMedGoogle Scholar
  21. 21.
    Ide-Ektessabi A, Kawakami T, Watt F (2004) Distribution and chemical state analysis of iron in the Parkinsonian substantia nigra using synchrotron radiation micro beams. Nucl Instrum Meth Phys Res B 213:590–594CrossRefGoogle Scholar
  22. 22.
    Ishihara R, Ide-Ektessabi A, Ikeda K, Mizuno Y, Fujisawa S, Takeuchi T, Ohta T (2002) Investigation of cellular metallic elements in single neurons of human brain tissues. Neuroreport 13(14):1817–1820CrossRefPubMedGoogle Scholar
  23. 23.
    Chwiej J, Szczerbowska-Boruchowska M, Wojcik S, Lankosz M, Chlebda M, Adamek D, Tomik B, Setkowicz Z, Falkenberg G, Stegowski Z, Szczudlik A (2005) Implementation of X-ray fluorescence microscopy for investigation of elemental abnormalities in central nervous system tissue. J Alloy Compd 401(1–2):184–188CrossRefGoogle Scholar
  24. 24.
    Brooks BR (1994) El Escorial World Federation of Neurology criteria for the diagnosis of amyotrophic lateral sclerosis. Subcommittee on Motor Neuron Diseases/Amyotrophic Lateral Sclerosis of the World Federation of Neurology Research Group on Neuromuscular Diseases and the El Escorial “Clinical limits of amyotrophic lateral sclerosis” workshop contributors. J Neurol Sci 124(Suppl.):96–107CrossRefPubMedGoogle Scholar
  25. 25.
    Falkenberg G, Rickers K (2002) Pink-beam and monochromatic micro-X-ray fluorescence analysis at the beamline L. In: Krell U, Schneider JR, von Zimmerman M (Eds) Hasylab Annual Report 2002 Part I, HASYLAB at DESY, Hamburg, pp 88–95Google Scholar
  26. 26.
    Simionovici AS, Chukalina M, Schroer CG, Drakopoulos M, Snigirev AA, Snigireva II, Lengeler B, Janssens K, Adams F (2000) High-resolution X-ray fluorescence microtomography of homogeneous samples. IEEE Trans Nucl Sci 47:2736–2740CrossRefGoogle Scholar
  27. 27.
    Bilderback DH, Hoffman SA, Thiel DJ (1994) Nanometer spatial-resolution achieved in hard X-ray-imaging and Laue diffraction experiments. Science 263:201–203PubMedCrossRefGoogle Scholar
  28. 28.
    Lengeler B, Schroer CG, Tuemmler J, Benner B, Richwin M, Snigirev A, Snigireva I, Drakopoulos M (1999) Imaging by parabolic refractive lenses in the hard X-ray range. J Synchrotron Radiat 6:1153–1167CrossRefGoogle Scholar
  29. 29.
    Currie LA (1968) Limits for qualitative detection and quantitative determination. Anal Chem 40:586–593CrossRefGoogle Scholar
  30. 30.
    Kapaki E, Zournas C, Kanias G, Zambelis T, Kakami A, Papageorgiou C (1997) Essential trace element alterations in amyotrophic lateral sclerosis. J Neurol Sci 147(2):171–175CrossRefPubMedGoogle Scholar
  31. 31.
    Lin DD, Cohen AS, Coulter DA (2001) Zinc-induced augmentation of excitatory synaptic currents and glutamate receptor responses in hippocampal CA3 neurons. J Neurophysiol 85(3):1185–1196PubMedGoogle Scholar
  32. 32.
    Choi DW, Koh JY (1998) Zinc and brain injury. Ann Rev Neurosci 21:347–375CrossRefPubMedGoogle Scholar
  33. 33.
    Frederickson CJ, Koh JY, Bush AJ (2005) The neurobiology of zinc in health and disease. Nat Rev Neurosci 6:449–462CrossRefPubMedGoogle Scholar
  34. 34.
    Eom SJ, Kim EY, Lee JE, Kang HJ, Shim J, Kim SU, Gwag BJ, Choi EJ (2001) Zn(2+) induces stimulation of the c-Jun N-terminal kinase signaling pathway through phosphoinositide 3-Kinase. Mol Pharmacol 59(5):981–986PubMedGoogle Scholar
  35. 35.
    Mann DMA, Yates PO (1974) Lipoprotein pigments – their relationship to ageing in the human nervous system II. The melanin content of pigmented nerve cells. Brain 97:489–498PubMedCrossRefGoogle Scholar
  36. 36.
    Weiss JH, Sensi SL (2000) Ca2+ permeable AMPA/kainate channels and selective neurodegeneration. Trends Neurosci 23:365–371CrossRefPubMedGoogle Scholar
  37. 37.
    Frederickson CJ (1989) Neurobiology of zinc and zinc-containingneurons. Int Rev Neurobiol 31:145–238PubMedGoogle Scholar
  38. 38.
    Coleman JE (1992) Zinc proteins: enzymes, storage proteins, transcription factors, and replication proteins. Ann Rev Biochem 61:897–946CrossRefPubMedGoogle Scholar
  39. 39.
    Estevez AG, Crow JP, Sampson JB, Reiter C, Zhuang Y, Richardson GJ, Tarpey MM, Barbeito L, Beckman JS (1999) Induction of nitric oxide-dependent apoptosis in motor neurons by zinc-deficient superoxide dismutase. Science 286:2498–2500CrossRefPubMedGoogle Scholar
  40. 40.
    Rotilio G, Carri MT, Rossi L, Ciriolo MR (2000) Copper-dependent oxidative stress and neurodegeneration. IUBMB Life 50(4–5):309–314CrossRefPubMedGoogle Scholar
  41. 41.
    Silahtaroglu AN, Brondum-Nielsen K, Gredal O, Werdelin L, Panas M, Petersen MB, Tommerup N, Tümer Z (2002) Human CCS gene: genomic organization and exclusion as a candidate for amyotrophic lateral sclerosis (ALS). BMC Genet 3(1):5CrossRefPubMedGoogle Scholar
  42. 42.
    Linder MC (2001) Copper and genomic stability. Mutation Res 475:141–152PubMedGoogle Scholar
  43. 43.
    Ross BM, Moszczynska A, Ehrlich J, Kish SJ (1998) Low activity of key phospholipid catabolic and anabolic enzymes in human substantia nigra: possible implications for Parkinson’s disease. Neuroscience 83:791–798CrossRefPubMedGoogle Scholar
  44. 44.
    Siesjo BK (1981) Cell damage in the brain: A speculative synthesis. J Cereb Blood Flow Metab 1:155–185PubMedGoogle Scholar
  45. 45.
    Kristian T, Siesjo BK (1996) Calcium related damage in ischemia. Life Sci 59:357–367CrossRefPubMedGoogle Scholar
  46. 46.
    Yu SP, Canzoniero LMT, Choi DW (2001) Iron homeostasis and apoptosis. Curr Opin Cell Biol 13:405–411CrossRefPubMedGoogle Scholar
  47. 47.
    Bergomi M, Vinceti M, Nacci G, Pietrini V, Bratter P, Alber D, Ferrari A, Vescovi L, Guidetti D, Sola P, Malagu S, Aramini C, Vivoli G (2002) Environmental exposure to trace elements and risk of amyotrophic lateral sclerosis: a population-based case-control study. Environ Res 89(2):116–123CrossRefPubMedGoogle Scholar
  48. 48.
    Nagano S, Satoh M, Sumi H (2001) Reduction of metallothioneins promotes the disease expression of familial amyotrophic lateral sclerosis mice in a dose-dependent manner. Eur J Neurosci 13(7):1363–1370CrossRefPubMedGoogle Scholar
  49. 49.
    Shaw IC, Fitzmaurice PS, Mitchell JD, Lynch PG (1995) Studies on cellular free radical protection mechanisms in the anterior horn from patients with amyotrophic lateral sclerosis. Neurodegeneration 4(4):391–396CrossRefPubMedGoogle Scholar
  50. 50.
    Tomblyn M, Kasarskis EJ, Xu Y, St Clair DK (1998) Distribution of MnSOD polymorphisms in sporadic ALS patients. J Mol Neurosci 10(1):65–66PubMedCrossRefGoogle Scholar
  51. 51.
    Liu Y, Brooks BR, Taniguchi N, Hartmann HA (1998) CuZnSOD and MnSOD immunoreactivity in brain stem motor neurons from amyotrophic lateral sclerosis patients. Acta Neuropathol (Berl) 95(1):63–70CrossRefGoogle Scholar
  52. 52.
    Pamphlett R, McQuilty R, Zarkos K (2001) Blood levels of toxic and essential metals in motor neuron disease. Neurotoxicology 22(3):401–410CrossRefPubMedGoogle Scholar
  53. 53.
    Kanias GD, Kapaki E (1997) Trace elements, age, and sex in amyotrophic lateral sclerosis disease. Biol Trace Elem Res 56(2):187–201PubMedCrossRefGoogle Scholar
  54. 54.
    Kurlander HM, Patten BM (1979) Metals in spinal cord tissue of patients dying of motor neuron disease. Ann Neurol 6(1):21–24CrossRefPubMedGoogle Scholar
  55. 55.
    Khare SS, Ehmann WD, Kasarskis EJ, Markesbery WR (1990) Trace element imbalances in amyotrophic lateral sclerosis. Neurotoxicology 11(3):521–532PubMedGoogle Scholar
  56. 56.
    Markesbery WR, Ehmann WD, Candy JM (1995) Neutron activation analysis of trace elements in motor neuron disease spinal cord. Neurodegeneration 4(4):383–390CrossRefPubMedGoogle Scholar
  57. 57.
    Torsdottir G, Kristinsson J, Gudmundsson G, Snaedal J, Johannesson T (2000) Copper, ceruloplasmin and superoxide dismutase (SOD) in amyotrophic lateral sclerosis. Pharmacol. Toxicol. 87(3):126–130CrossRefPubMedGoogle Scholar
  58. 58.
    Kasarskis EJ, Tandon L, Lovell MA, Ehmann WD (1995) Aluminum, calcium, and iron in the spinal cord of patients with sporadic amyotrophic lateral sclerosis using laser microprobe mass spectroscopy: a preliminary study. J Neurol Sci 130(2):203–208CrossRefPubMedGoogle Scholar
  59. 59.
    Valko M, Morris H, Cronin MT (2005) Metals, toxicity and oxidative stress. Curr Med Chem 12(10):1161–1208CrossRefPubMedGoogle Scholar
  60. 60.
    Ince PG, Shaw PJ, Candy JM, Mantle D, Ehmann W, Markesbury W (1994) Iron, selenium and glutathione peroxidase activity are elevated in sporadic motor neuron disease. Neurosci Lett 182(1):87–90CrossRefPubMedGoogle Scholar
  61. 61.
    Nagata H, Miyata S, Nakamura S, Kameyama M, Katsui Y (1985) Heavy metal concentrations in blood cells in patients with amyotrophic lateral sclerosis. J Neurol Sci 67(2):173–178CrossRefPubMedGoogle Scholar
  62. 62.
    Kihira T, Mukoyama M, Ando K, Yase Y, Yasui M (1990) Determination of manganese concentrations in the spinal cords from amyotrophic lateral sclerosis patients by inductively coupled plasma emission spectroscopy. J Neurol Sci 98(2–3):251–258CrossRefPubMedGoogle Scholar
  63. 63.
    Ejima A, Watanabe C, Koyama H, Satoh H (1996) Analysis of trace elements in the central nerve tissues with inductively coupled plasma-mass spectrometry. Tohoku J Exp Med 178(1):1–10PubMedCrossRefGoogle Scholar
  64. 64.
    Miyata S, Nakamura S, Nagata H, Kameyama M (1983) Increased manganese level in spinal cords of amyotrophic lateral sclerosis determined by radiochemical neutron activation analysis. J Neurol Sci 61(2):283–293CrossRefPubMedGoogle Scholar
  65. 65.
    Mitchell JD, East BW, Harris IA (1986) Trace elements in the spinal cord and other tissues in motor neuron disease. J Neurol Neurosurg Psych 49(2):211–215Google Scholar
  66. 66.
    Yanagihara R, Garruto RM, Gajdusek DC, Tomita A, Uchikawa T, Konagaya Y, Chen KM, Sobue I, Plato CC, Gibbs CJ (1984) Calcium and vitamin D metabolism in Guamanian Chamorros with amyotrophic lateral sclerosis and parkinsonism-dementia. Ann Neurol 15(1):42–48CrossRefPubMedGoogle Scholar
  67. 67.
    Garruto RM, Swyt C, Fiori CE, Yanagihara R, Gajdusek DC (1985) Intraneuronal deposition of calcium and aluminium in amyotropic lateral sclerosis of Guam. Lancet 2(8468):1353CrossRefPubMedGoogle Scholar
  68. 68.
    Kjellin KG (1967) The CSF iron in patients with neurological diseases. Acta Neurol Scand 43(3):299–313PubMedCrossRefGoogle Scholar
  69. 69.
    Chen KM (1995) Disappearance of ALS from Guam: implications for exogenous causes. Rinsho Shinkeigaku 35(12):1549–1553PubMedGoogle Scholar
  70. 70.
    Adamek D, Tomik B, Pichór A, Kałuża J, Szczudlik A (2002) Heterogeneity of neuropathological changes in ALS. The review of own autopsy material. Folia Neuropathologica 40:119–124PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • B. Tomik
    • 1
  • J. Chwiej
    • 2
  • M. Szczerbowska-Boruchowska
    • 2
    • 6
    Email author
  • M. Lankosz
    • 2
  • S. Wójcik
    • 2
  • D. Adamek
    • 1
  • G. Falkenberg
    • 3
  • S. Bohic
    • 4
  • A. Simionovici
    • 4
    • 5
  • Z. Stegowski
    • 2
  • A. Szczudlik
    • 1
  1. 1.Institute of NeurologyJagiellonian University Medical CollegeKrakowPoland
  2. 2.Faculty of Physics and Applied Computer ScienceUniversity of Science and TechnologyKrakowPoland
  3. 3.Hamburger Synchrotronstrahlungslabor at Deutsches Elektronen-SynchrotronHamburgGermany
  4. 4.European Synchrotron Radiation FacilityGrenobleFrance
  5. 5.Laboratoire de Sciences de la Terre, ENSLyonFrance
  6. 6.Faculty of Physics and Applied Computer ScienceUniversity of Science and TechnologyKrakowPoland

Personalised recommendations