Skip to main content

Advertisement

Log in

Sex-dependent Actions of Amyloid Beta Peptides on Hippocampal Choline Carriers of Postnatal Rats

  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

It is suggested that amyloid beta peptides (Aβ) play a role in the pathogenesis of Alzheimer disease but their physiological function is still unknown. However, low pM–nM concentrations mediate a hypofunction of a basal forebrain cholinergic system without marked signs of neurotoxicity. In this study, we compared in vitro effects of soluble nonaggregated human Aβ 1-40 and 1-42 either on synaptosomal hemicholinium-3 sensitive choline carriers or on membrane fluidity in hippocampi of male and female Wistar rats aged 7 and 14 days or 2–3 months. The results indicate age- and sex-dependent effects mediated by peptides at nM concentrations but no significant differences between both fragments. Namely, opposite actions were observed in 14-day (the increase in the choline uptake and membrane fluidity) when compared to 7-day old and adult males (the mild drops). Lineweaver–Burk plot analysis revealed that the enhancement of the high-affinity choline transport in 14-day old males occurs via alterations in K M and the change was accompanied by a mild increase in the specific binding of [3H]hemicholinium-3. On the other hand, no age-dependent differences were found in females. Rat Aβ 1-40 mediated similar effects on 14-day old rats as the corresponding human fragment. Moreover, higher levels of soluble peptides were detected in immature when compared to mature male brains by means of competitive ELISA. Our study indicates that Aβ could play a role in postnatal sexual differentiation of hippocampal cholinergic system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Roβner S, Ueberham U, Schliebs R, Perez-Polo JR, Bugl V (1998) The regulation of amyloid precursor protein metabolism by cholinergic mechanisms and neurotrophin receptor signaling. Progr Neurobiol 56:541–569

    Article  PubMed  Google Scholar 

  2. Turner PR, O’Connor K, Tate WP, Abraham WC (2003) Roles of amyloid precursor protein and its fragments in regulating neural activity, plasticity and memory. Progr Neurobiol 70:1–32

    Article  PubMed  CAS  Google Scholar 

  3. Clarris HJ, Key B, Beyreuther K, Masters CL, Small DH (1995) Expression of the amyloid protein precursor of Alzheimer’s disease in the developing rat olfactory system. Dev Brain Res 88:87–95

    Article  CAS  Google Scholar 

  4. Chen ST, Patel AJ, Garey LJ, Jen LS (1997) Expression of ß-amyloid precursor protein immunoreactivity in the retina of the rat during normal development and after neonatal optic tract lesion. NeuroReport 8:713–717

    PubMed  CAS  Google Scholar 

  5. Fakla I, Kovacs I, Yamaguchi H, Geula C, Kasa P (2000) Expressions of amyloid precursor protein, synaptophysin and presenilin -1 in the different areas of the developing cerebellum of rat. Neurochem Int 36:143–151

    Article  PubMed  CAS  Google Scholar 

  6. Kirazov E, Kirazov L, Bigl V, Schliebs R (2001) Ontogenetic changes in protein level of amyloid precursor protein (APP) in growth cones and synaptosomes from rat brain and prenatal expression pattern of APP mRNA isoforms in developing rat embryo. Int J Dev Neurosci 19:287–296

    Article  PubMed  CAS  Google Scholar 

  7. Saido TC (1998) Alzheimer’s disease as proteolytic disorders: anabolism and catabolism of ß-amyloid. Neurobiol Aging 19:S69–S75

    Article  PubMed  CAS  Google Scholar 

  8. Small DH, McLean CA (1999) Alzheimer’s disease and the amyloid β protein: what is the role of amyloid? J Neurochem 73:443–449

    Article  PubMed  CAS  Google Scholar 

  9. Walsh DM, Selkoe DJ (2004) Deciphering the molecular basis of memory failure in Alzheimer’s disease. Neuron 44:181–193

    Article  PubMed  CAS  Google Scholar 

  10. He XY, Wen GY, Mery G, Lin D, Yang YZ, Mehta P, Schulz H, Yang SY (2002) Abundant type 10 17ß-hydroxysteroid dehydrogenase in the hippocampus of mouse Alzheimer’s disease model. Mol Brain Res 99:46–53

    Article  PubMed  CAS  Google Scholar 

  11. Wirths O, Multhaup G, Bayer TA (2004) A modified ß-amyloid peptide – the first step of a fatal cascade. J Neurochem 91:513–520

    Article  PubMed  CAS  Google Scholar 

  12. Plant LD, Boyle JP, Smith IF, Peers C, Pearson HA (2003) The production of amyloid ß peptide is a critical requirement for the viability of central neurons. J Neurosci 23:5531–5535

    PubMed  CAS  Google Scholar 

  13. Esteban JA (2004) Living with the enemy: a physiological role for the ß-amyloid peptide. Trends Neurosci 27:1–3

    Article  PubMed  CAS  Google Scholar 

  14. Auld DS, Kar S, Quirion R (1998) β-Amyloid peptides as direct cholinergic neuromodulators: a missing link? Trends Neurosci 21:43–49

    Article  PubMed  CAS  Google Scholar 

  15. Kar S, Issa AM, Seto D, Auld DS, Collier B, Quirion R (1998) Amyloid β-peptide inhibits high-affinity choline uptake and acetylcholine release in rat hippocampal slices. J Neurochem 70:2179–2187

    Article  PubMed  CAS  Google Scholar 

  16. Krištofiková Z, Tejkalová H, Klaschka J (2001) Amyloid beta peptide 1–40 and the function of rat hippocampal hemicholinium-3 sensitive choline carriers: effects of a proteolytic degradation in vitro. Neurochem Res 26:203–212

    Article  PubMed  Google Scholar 

  17. Kar S (2002) Role of amyloid β peptides in the regulation of central cholinergic function and its relevance to Alzheimer’s disease pathology. Drug Dev Res 56:248–263

    Article  CAS  Google Scholar 

  18. Auld DS, Kornecook TJ, Bastianetto S, Quirion R (2002) Alzheimer’s disease and the basal forebrain cholinergic system: relations to ß-amyloid peptides, cognition, and treatment strategies. Prog Neurobiol 68:209–245

    Article  PubMed  CAS  Google Scholar 

  19. Moreno-Flores MT, Medina M, Wandosell F (1999) Expression of presenilin 1 in nervous system during rat development. J Comp Neurol 410:556–570

    Article  PubMed  CAS  Google Scholar 

  20. Krištofiková Z, Platilová V, Klaschka J (2002) Age- and sex-dependent effects of ethanol on hippocampal hemicholinium-3 sensitive choline carriers during postnatal development of rats. Neurochem Res 28:397–405

    Article  Google Scholar 

  21. Eckert GP, Cairns NJ, Maras A, Gattaz WF, Muller WE (2000) Cholesterol modulates the membrane-disordering effects of beta-amyloid peptides in the hippocampus: specific changes in Alzheimer’s disease. Dement Geriatr Cogn Disord 11:181–186

    Article  PubMed  CAS  Google Scholar 

  22. Kremer JJ, Pallitto MM, Sklansky DJ, Murphy RM (2000) Correlation of β-amyloid aggregate size and hydrophobicity with decreased bilayer fluidity of model membranes. Biochemistry 39:10309–10318

    Article  PubMed  CAS  Google Scholar 

  23. Kremer JJ, Sklansky DJ, Murphy RM (2001) Profile of changes in lipid bilayer structure caused by β-amyloid peptide. Biochemistry 40:8563–8571

    Article  PubMed  CAS  Google Scholar 

  24. Chochina SV, Avdulov NA, Igbavboa U, Clearly JP, O´Hare EO, Wood WG (2001) Amyloid ß-peptide 1–40 increases neuronal membrane fluidity: role of cholesterol and brain region. J Lipid Res 42:1292–1297

    PubMed  CAS  Google Scholar 

  25. Beffert U, Cohn JS, Petit-Turcotte C, Tremblay M, Aumont N, Ramassamy C, Davignon J, Poirier J (1999) Apolipoprotein E and ß-amyloid levels in the hippocampus and frontal cortex of Alzheimer’s disease subjects are disease-related and apolipoprotein E genotype dependent. Brain Res 843: 87–94

    Article  PubMed  CAS  Google Scholar 

  26. Conte V, Uryu K, Fujimoto S, Yao Y, Rokach J, Longhi L, Trojanowski JQ, Lee V, McIntosh TK, Pratico D (2004) Vitamin E reduces amyloidosis and improves cognitive function in Tg2576 mice following repetitive concussive brain injury. J Neurochem 90:758–764

    Article  PubMed  CAS  Google Scholar 

  27. Dewachter I, Van Dorpe J, Smeijers L, Gilis M, Kuipéri C, Laenen I, Caluwaerts N, Moechars D, Checler F, Vanderstichele H, Van Leuven F (2000) Aging increased amyloid peptide and caused amyloid plaques in brain of old APP/V7171 transgenic mice by a different mechanism than mutant presenilin 1. J Neurosci 20:6452–6458

    PubMed  CAS  Google Scholar 

  28. Richardson JC, Kendal CE, Anderson R, Priest F, Gower E, Soden P, Gray R, Topps S, Howlett DR, Lavender D, Clarke NJ, Barnes JC, Haworth R, Stewart MG, Rupniak HTR (2003) Ultrastructural and behavioural changes precede amyloid deposition in a transgenic model of Alzheimer’s disease. Neuroscience 122:213–228

    Article  PubMed  CAS  Google Scholar 

  29. Yao J, Petanceska SS, Montine TJ, Holtzman DM, Schmidt SD, Parker CA, Callahan MJ, Lipinski WJ, Bisgaier CL, Turner BA, Nixon RA, Martins RN, Ouimet C, Smith JD, Davies P, Laska E, Ehrlich ME, Walker LC, Mathews PM, Gandy S (2004) Aging, gender and APOE isotype modulate metabolism of Alzheimer’s Aß peptides and F2-isoprostanes in the absence of detectable amyloid deposits. J Neurochem 90:1011–1018

    Article  PubMed  CAS  Google Scholar 

  30. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  31. Dixon WJ, Sampson P, Mundle P (1990) One- and two-way analysis of variance with data screening. In: Dixon WJ, Brown MB, Engelman L, Jennrich TI (eds), BMDP Statistical Software Manual, University of California Press, Berkeley, pp189–212

    Google Scholar 

  32. Reisert I, Lieb K, Beyer C, Pilgrim C (1996) Sex differentiation of rat hippocampal GABAergic neurons. Eur J Neurosci 8:1718–1724

    Article  PubMed  CAS  Google Scholar 

  33. Krištofiková Z, Šťastný F, Bubeníková V, Druga R, Klaschka J, Španiel F (2004) Age- and sex-dependent laterality of rat hippocampal cholinergic system in relation to animal models of neurodevelopmental and neurodegenerative disorders. Neurochem Res 29:671–680

    Article  PubMed  Google Scholar 

  34. Hübner C, Lindner SG, Stern M, Claussen M, Kohlschütter A (1988) Membrane fluidity and lipid composition of rat small intestinal brush-border membranes during postnatal maturation. Biochim Biophys Acta 939:145–150

    Article  PubMed  Google Scholar 

  35. Benedetti A, Ferretti G, Curatola G, Jézéquel AM, Orlandi F (1988) Age and sex related changes of plasma membrane fluidity in isolated rat hepatocytes. Biochem Biophys Res Commun 156:840–845

    Article  PubMed  CAS  Google Scholar 

  36. Gouras GK, Xu H, Gross RS, Greenfield JP, Hai B, Wang R, Greengard P (2000) Testosterone reduces neuronal secretion of Alzheimer’s ß-amyloid peptides. Proc Natl Acad Sci USA 97:1202–1205

    Article  PubMed  CAS  Google Scholar 

  37. Pike CJ (2001) Testosterone attenuates beta-amyloid toxicity in cultured hippocampal neurons. Brain Res 919:160–165

    Article  PubMed  CAS  Google Scholar 

  38. Nakamura N, Fujita H, Kawata M (2002) Effects of gonadectomy on immunoreactivity for choline acetyl transferase in the cortex, hippocampus, and basal forebrain of adult male rats. Neuroscience 109:473–485

    Article  PubMed  CAS  Google Scholar 

  39. Whiting KP, Restall CJ, Brain PF (2000) Steroid hormone-induced effects on membrane fluidity and their potential roles in non-genomic mechanisms. Life Sci 67:743–757

    Article  PubMed  CAS  Google Scholar 

  40. Lehtonen JY, Holopainen JM, Kinnunen PK (1996) Activation of phospholipase A2 by amyloid beta-peptides in vitro. Biochemistry 35:9407–9414

    Article  PubMed  CAS  Google Scholar 

  41. Kanfer JN, Sorrentino G, Sitar DS (1998) Phospholipases as meditors of amyloid beta peptide neurotoxicity: an early event contributing to neurodegeneration characteristic of Alzheimer’s disease. Neurosci Lett 257:93–96

    Article  PubMed  CAS  Google Scholar 

  42. Yamada K, Saltarelli MD, Coyle JT (1988) Involvement of phospholipase A2 in the regulation of [3H]hemicholinium-3 binding. Biochem Pharmacol 37:4367–4373

    Article  PubMed  CAS  Google Scholar 

  43. Saltarelli MD, Yamada K, Coyle JT (1990) Phospolipase A2 and [3H]hemicholinium-3 binding sites in rat brain: a potential second-messenger role for fatty acids in the regulation of high-affinity choline uptake. J Neurosci 10:62–67

    PubMed  CAS  Google Scholar 

  44. Yoshihara Y, Yamaji M, Kawasaki M, Watanabe Y (1992) Ontogeny of cytosolic phospholipase A2 activity in rat brain. Biochem Biophys Res Commun 185:350–355

    Article  PubMed  CAS  Google Scholar 

  45. Yang HC, Mosior M, Ni B, Dennis EA (1999) Regional distribution, ontogeny, purification, and characterization of the Ca2+-independent phospholipase A2 from rat brain. J Neurochem 73:1278–1287

    Article  PubMed  CAS  Google Scholar 

  46. Schmidt BMW, Gerdes D, Feuring M, Falkenstein E, Christ M, Wehling M (2000) Rapid, nongenomic steroid actions: a new age? Front Neuroendocrin 21:57–94

    Article  CAS  Google Scholar 

  47. Abayasekara DR, Band AM, Cooke BA (1990) Evidence for the involvement of phospholipase A2 in the regulation of luteinizing hormone-stimulated steroidogenesis in rat testis Leydig cells. Mol Cell Endocrinol 70:147–153

    Article  PubMed  CAS  Google Scholar 

  48. Prapong T, Uemura E, Hsu WH (2001) G protein and cAMP-dependent protein kinase mediate amyloid beta-peptide inhibition of neuronal glucose uptake. Exp Neurol 167:59–64

    Article  PubMed  CAS  Google Scholar 

  49. Tanimukai S, Hasegawa H, Nakai M, Yagi K, Hirai M, Saito N, Taniguchi T, Terashima A, Yasuda M, Kawamata T, Tanaka C (2002) Nanomolar amyloid ß protein activates a specific PKC isoform mediating phosphorylation of MARCKS in Neuro2A cells. NeuroReport 13:549–553

    Article  PubMed  CAS  Google Scholar 

  50. Breer H., Knipper M (1990) Regulation of high affinity choline uptake. J Neurobiol 21:269–275

    Article  PubMed  CAS  Google Scholar 

  51. Li AJ, Suzuki M, Suzuki S, Ikemoto M, Imamura T (2003) Differential phosphorylation at serine sites in glutamate receptor-1 within neonatal rat hippocampus. Neurosci Lett 341:41–44

    Article  PubMed  CAS  Google Scholar 

  52. Kawakami M, Nakanishi N (2001) The role of an endogenous PAK inhibitor, PKIalpha, in organizing left-right axis formation. Development 128:2509–2515

    PubMed  CAS  Google Scholar 

  53. Ginobili de Martinez MS, Barrantes FJ (1988) Ca2+ and phospholipid-dependent protein kinase activity in rat cerebral hemispheres. Brain Res 440:386–390

    Article  PubMed  Google Scholar 

Download references

Acknowledgement

The research was performed under GACR grant (305/03/1547).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. Krištofiková.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krištofiková, Z., Říčný, J., Kozmiková, I. et al. Sex-dependent Actions of Amyloid Beta Peptides on Hippocampal Choline Carriers of Postnatal Rats. Neurochem Res 31, 351–360 (2006). https://doi.org/10.1007/s11064-005-9026-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-005-9026-2

Keywords

Navigation