Skip to main content
Log in

Adaptive Guidance and Attention-Refined Network for Fast Video Object Segmentation

  • Published:
Neural Processing Letters Aims and scope Submit manuscript

Abstract

Most video object segmentation networks have difficulties in balancing accuracy and speed, leading them to fail to meet the requirements of application. In this paper, we propose a lightweight online-trained video object segmentation network. Specifically, to force the network focus on the potential object, we propose a new way to guide the encoder module by classification score map, and integrate a cross-dimension attention into the refinement segmentation module. Meanwhile, to reduce the negative influence of unreliable samples, we use two indexes to adaptively choose templates for the memory module. Experiments were conducted on three popular benchmarks, and our approach has achieved a good trade-off between accuracy and speed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bao L, Wu B, Liu w (2018) CNN in MRF: video object segmentation via inference in a CNN-based higher-order spatio-temporal MRF’. In: IEEE conference on computer vision and pattern recognition (CVPR), pp 5977–5986

  2. Caelles S et al (2017) One-shot video object segmentation. In: IEEE conference on computer vision and pattern recognition (CVPR), pp 5320–5329

  3. Chen X et al (2020) State-aware tracker for real-time video object segmentation. In: IEEE conference on computer vision and pattern recognition (CVPR), pp 9384–9393

  4. Cheng J et al (2018) Fast and accurate online video object segmentation via tracking parts. In: IEEE conference on computer vision and pattern recognition (CVPR), pp 7415–7424

  5. Ci H, Wang C, Wang Y (2018) Video object segmentation by learning location-sensitive embeddings. In: European conference on computer vision (ECCV). Springer, pp 524–539

  6. Dai Y et al (2021) Attentional feature fusion. In: IEEE winter conference on applications of computer vision, pp 3560–3569

  7. Duarte K, Rawat YS, Shah M (2019) CapsuleVOS: semi-supervised video object segmentation using capsule routing. In: IEEE international conference on computer vision (ICCV), pp 8479–8488

  8. Duke B et al (2021) Sstvos: sparse spatiotemporal transformers for video object segmentation. In: EEE conference on computer vision and pattern recognition (CVPR), pp 5912–5921

  9. Ge W, Lu X, Shen J (2021) Video object segmentation using global and instance embedding learning. In: IEEE conference on computer vision and pattern recognition (CVPR), pp 16836–16845

  10. Zhou Q et al (2019) Motion-guided spatial time attention for video object segmentation. In: IEEE international conference on computer vision (ICCV) workshops, pp 693–696

  11. Hu J, Shen L, Sun G (2018) Squeeze-and-excitation networks. In: 2018 IEEE/CVF conference on computer vision and pattern recognition, pp 7132–7141

  12. Hu L et al. (2021) “Learning Position and Target Consistency for Memory-Based Video Object Segmentation”. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) pp. 4144– 4154

  13. Jampani V, Gadde R, Gehler PV (2017) Video propagation networks. In: IEEE conference on computer vision and pattern recognition (CVPR), pp 3154–3164

  14. JPont-Tuset J et al (2017) The 2017 DAVIS challenge on video object segmentation. arXiv eprints arXiv:1704.00675

  15. Khoreva A et al (2019) Lucid data dreaming for video object segmentation. Int J Comput Vis 127(9):1175–1197

    Article  Google Scholar 

  16. Kingma DP, Ba J (2014) Adam: a method for stochastic optimization. In: Computer Science

  17. Maninis KK et al (2018) Video object segmentation without temporal information. IEEE Trans Pattern Anal Mach Intell 41(6):1515–1530

    Article  Google Scholar 

  18. Li L et al (2022) Locality-aware inter-and intra-video reconstruction for self-supervised correspondence learning. In: IEEE conference on computer vision and pattern recognition (CVPR), pp 8709–8720

  19. Li X, Change Loy C (2018) Video object segmentation with joint re-identification and attention-aware mask propagation. In: European conference on computer vision (ECCV). Springer, pp 90–105

  20. Li Y, Shen Z, Shan Y (2020) Fast video object segmentation using the global context module. In: European conference on computer vision (ECCV), vol 12355. Springer, pp 735–750

  21. Liang Y et al (2020) Video object segmentation with adaptive feature bank and uncertain-region refinement. In: Conference and workshop on neural information processing systems (NIPS)

  22. Lu X et al (2020) Learning video object segmentation from unlabeled videos. In: IEEE conference on computer vision and pattern recognition (CVPR), pp 8960–8970

  23. Lu X et al (2020) Video object segmentation with episodic graph memory networks. In: European conference on computer vision (ECCV). Springer, pp 661–679

  24. Luiten J, Voigtlaender P, Leibe B (2018) PReMVOS: proposal-generation, refinement and merging for video object segmentation. In: Asian conference on computer vision. vol 11364. Lecture Notes in Computer Science, pp 565–580

  25. Martin DR, Fowlkes CC, Malik J (2004) Learning to detect natural image boundaries using local brightness, color, and texture cues . In: IEEE transactions on pattern analysis and machine intelligence 26.5, pp 530–549

  26. Misra D et al (2021) Rotate to attend: convolutional triplet attention module. In: IEEE winter conference on applications of computer vision, pp 3139–3148

  27. Nocedal J, Wright SJ (1999) Numerical optimization. Springer, Berlin

    Book  MATH  Google Scholar 

  28. Oh S et al (2018) Fast video object segmentation by reference-guided mask propagation. In: IEEE conference on computer vision and pattern recognition (CVPR), pp 7376–7385

  29. Oh SW et al (2019) Video object segmentation using space-time memory networks. In: IEEE international conference on computer vision (ICCV), pp 9225–9234

  30. Ohnander J et al (2019) A generative appearance model for end-to-end video object segmentation. In: IEEE conference on computer vision and pattern recognition (CVPR), pp 8953– 8962

  31. Perazzi F et al (2016) A benchmark dataset and evaluation methodology for video object segmentation. In: IEEE conference on computer vision and pattern recognition (CVPR), pp 724–732

  32. Perazzi F et al (2017) Learning video object segmentation from static images. In: IEEE conference on computer vision and pattern recognition (CVPR), pp 3491–3500

  33. Robinson A et al (2020) Learning fast and robust target models for video object segmentation. In: IEEE conference on computer vision and pattern recognition (CVPR), pp 7406–7415

  34. Ronneberger O, Fischer P, Brox T (2015) U-net: convolutional networks for biomedical image segmentation. In: Medical image computing and computer-assisted intervention. vol 9351. Springer, pp 234–241

  35. Seong H, Hyun J, Kim E (2020) Kernelized memory network for video object segmentation. In: European conference on computer vision (ECCV). Springer, pp 629–645

  36. Shewchuk JR et al (1994) An introduction to the conjugate gradient method without the agonizing pain. In: Technical Report

  37. Yoon JS et al (2017) Pixel-level matching for video object segmentation using convolutional neural networks. In: IEEE international conference on computer vision (ICCV), pp 2186–2195

  38. Tjaden H et al (2018) A region-based gauss-newton approach to real-time monocular multiple object tracking. IEEE Trans Pattern Anal Mach Intell 41(8):1797–1812

    Article  Google Scholar 

  39. Voigtlaender P, Leibe B (2017) Online adaptation of convolutional neural networks for video object segmentation. In: The British machine vision conference (BMVC), pp 116.1–116.13

  40. Voigtlaender P et al (2019) FEELVOS: fast end-to-end embedding learning for video object segmentation. In: IEEE conference on computer vision and pattern recognition (CVPR), pp 9481– 9490

  41. Wang W et al (2018) Semi-supervised video object segmentation with super-trajectories. IEEE Trans Pattern Anal Mach Intell 41(4):985–998

    Article  Google Scholar 

  42. Wang Z et al (2019) RANet: ranking attention network for fast video object segmentation. In: IEEE international conference on computer vision (ICCV), pp 3977–3986

  43. Woo S et al (2018) CBAM: convolutional block attention module. In: Proceedings of the European conference on computer vision (ECCV), pp 3–19

  44. Xiao H et al (2018) MoNet: deep motion exploitation for video object segmentation. In: IEEE conference on computer vision and pattern recognition (CVPR), pp 1140–1148

  45. Xiao H et al (2019) Online meta adaptation for fast video object segmentation. IEEE Trans Pattern Anal Mach Intell 42(5):1205–1217

    Google Scholar 

  46. Xu N et al (2018) YouTube-VOS: a large-scale video object segmentation benchmark. arXiv e-prints , arXiv: 1809.03327

  47. Yang C et al (2021) Self-supervised video object segmentation by motion grouping. In: IEEE international conference on computer vision (CVPR), pp 7177–7188

  48. Yang L et al (2018) Efficient video object segmentation via network modulation. In: IEEE conference on computer vision and pattern recognition (CVPR), pp 6499–6507

  49. Yang L et al (2018) Efficient video object segmentation via network modulation. In: IEEE conference on computer vision and pattern recognition (CVPR), pp 6499–6507

  50. Yin Y et al (2021) Directional deep embedding and appearance learning for fast video object segmentation. IEEE Trans Neural Netw Learn Syst 33(8):3884–3894

    Article  Google Scholar 

  51. Zhang L et al (2019) Fast video object segmentation via dynamic targeting network. In: IEEE international conference on computer vision (ICCV), pp 5581–5590

  52. Zhang Y et al (2020) A transductive approach for video object segmentation. In: IEEE conference on computer vision and pattern recognition (CVPR), pp 6947–6956

  53. Zhang Y et al (2020) A transductive approach for video object segmentation. In: IEEE conference on computer vision and pattern recognition (CVPR), pp 6949–6958

  54. Zhou T et al (2022) A survey on deep learning technique for video segmentation. In: IEEE transactions on pattern analysis and machine intelligence, pp 1–20

  55. Zhou Tianfei et al (2020) MATNet: motion-attentive transition network for zero-shot video object segmentation. IEEE Trans Image Process 29:8326–8338

    Article  MATH  Google Scholar 

  56. Zhou T et al (2021) Target-aware object discovery and association for unsupervised video multi- object segmentation. In: IEEE conference on computer vision and pattern recognition (CVPR), pp 6985–6994

  57. Zhou Z et al (2019) Enhanced memory network for video segmentation. In: IEEE international conference on computer vision (ICCV) workshops, pp 689–692

Download references

Acknowledgements

Support for this study is provided by the National Natural Science Foundation of China, Research on occlusion perception, repair and reliability evaluation method for occlusion face recognition. 62106214. Support for this study is also provided by the Provincial Key Laboratory Performance Subsidy Project. 22567612 H.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moran Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Li, M., Xiao, C. et al. Adaptive Guidance and Attention-Refined Network for Fast Video Object Segmentation. Neural Process Lett 55, 7211–7225 (2023). https://doi.org/10.1007/s11063-023-11257-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11063-023-11257-6

Keywords

Navigation