Skip to main content
Log in

A Feature Selection Method Using Conditional Correlation Dispersion and Redundancy Analysis

  • Published:
Neural Processing Letters Aims and scope Submit manuscript

Abstract

Many irrelevant and redundant features are commonly found in high-dimensional small sample data. Feature selection effectively solves high-dimensional minor sample problems by removing many irrelevant and redundant features and improving the algorithm's accuracy. In some information-theoretic-based feature selection algorithms, the problem is that choosing different parameters means choosing different feature selection algorithms. How to dynamically circumvent the pre-determined a priori parameters become an urgent problem to be solved. The paper proposes a dynamic weighted conditional relevance dispersion and redundancy analysis (WRRFS) algorithm for feature selection. Firstly, the algorithm uses mutual information to calculate feature correlations and redundancy between features. Secondly, calculate the mean of the feature correlation terms, and the parameter weights of the conditional feature correlation terms are dynamically adjusted using the standard deviation. Finally, WRRFS is validated against other feature selection algorithms on three classifiers using 12 different datasets with classification accuracy metrics (f1_macro,f1_micro, and f1_weighted). The experimental results show that the WRRFS algorithm can improve the quality of feature subsets and increase classification accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Sen L, Anjun Ma, Sen Y et al (2018) A review of matched-pairs feature selection methods for gene expression data analysis. Comput Struct Biotechnol J 16:88–97. https://doi.org/10.1016/j.csbj.2018.02.005

    Article  Google Scholar 

  2. Sadat HE, Hossein MM (2019) Evolutionary feature subsets selection based on interaction information for high dimensional imbalanced data classification. Appl Soft Comput 82:105581. https://doi.org/10.1016/j.asoc.2019.105581

    Article  Google Scholar 

  3. Muhammed A-E, Marco A, Mohamed R (2021) Classification of breast cancer using microarray gene expression data: a survey. J Biomed Inform 117:103764. https://doi.org/10.1016/j.jbi.2021.103764

    Article  Google Scholar 

  4. Hambali MA, Oladele TO, Adewole KS (2020) Microarray cancer feature selection: Review, challenges and research directions. Int J Cogn Comput Eng 1:78–97. https://doi.org/10.1016/j.ijcce.2020.11.001

    Article  Google Scholar 

  5. Kushal KG, Shemim B, Aritra S et al (2021) Theoretical and empirical analysis of filter ranking methods: experimental study on benchmark DNA microarray data. Expert Syst Appl 169:114485. https://doi.org/10.1016/j.eswa.2020.114485

    Article  Google Scholar 

  6. Ali D, Abdelkamel T, Samy M et al (2021) Gene selection and classification of microarray data method based on mutual information and moth flame algorithm. Expert Syst Appl 166:114012. https://doi.org/10.1016/j.eswa.2020.114012

    Article  Google Scholar 

  7. Yang Z, Chaobo Z, Yiwen Z et al (2020) A review of data mining technologies in building energy systems: load prediction, pattern identification, fault detection and diagnosis. Energy Built Environ 1(2):149–164. https://doi.org/10.1016/j.enbenv.2019.11.003

    Article  Google Scholar 

  8. Heng L, Gregory D (2019) A semi-parallel framework for greedy information-theoretic feature selection. Inf Sci 492:13–28. https://doi.org/10.1016/j.ins.2019.03.075

    Article  MathSciNet  MATH  Google Scholar 

  9. Kumar PS, Bhushan MR, Kumar TA (2021) Machine learning based methods for software fault prediction: a survey. Expert Syst Appl 172:114595. https://doi.org/10.1016/j.eswa.2021.114595

    Article  Google Scholar 

  10. Wang X, Liu J, Cheng Y et al (2019) Dual hypergraph regularized PCA for biclustering of tumor gene expression data. IEEE Trans Knowl Data Eng 31(12):2292–2303. https://doi.org/10.1109/TKDE.2018.2874881

    Article  Google Scholar 

  11. Jie C, Jiawei L, Shulin W et al (2018) Feature selection in machine learning: a new perspective. Neurocomputing 300:70–79. https://doi.org/10.1016/j.neucom.2017.11.077

    Article  Google Scholar 

  12. Liyang G, Weiguo W (2020) Relevance assignation feature selection method based on mutual information for machine learning. Knowl Based Syst 209:106439. https://doi.org/10.1016/j.knosys.2020.106439

    Article  Google Scholar 

  13. Gavin B, Adam P, Ming-Jie Z et al (2012) Conditional likelihood maximisation: a unifying framework for information theoretic feature selection. J Mach Learn Res 13:27–66

    MathSciNet  MATH  Google Scholar 

  14. Lee C-Y, Cai J-Y (2020) LASSO variable selection in data envelopment analysis with small datasets. Omega 91:102019. https://doi.org/10.1016/j.omega.2018.12.008

    Article  Google Scholar 

  15. Divya J, Vijendra S (2018) Feature selection and classification systems for chronic disease prediction: a review. Egypt Inform J 19(3):179–189. https://doi.org/10.1016/j.eij.2018.03.002

    Article  Google Scholar 

  16. Albashish D, Hammouri AI, Braik M et al (2021) Binary biogeography-based optimization based SVM-RFE for feature selection. Appl Soft Comput 101:107026. https://doi.org/10.1016/j.asoc.2020.107026

    Article  Google Scholar 

  17. Hua Z, Zhou J, Hua Y et al (2020) Strong approximate Markov blanket and its application on filter-based feature selection. Appl Soft Comput 87:105957. https://doi.org/10.1016/j.asoc.2019.105957

    Article  Google Scholar 

  18. Zhang P, Gao W (2020) Feature selection considering uncertainty change ratio of the class label. Appl Soft Comput 95:106537. https://doi.org/10.1016/j.asoc.2020.106537

    Article  Google Scholar 

  19. Jun W, Jinmao W, Zhenglu Y et al (2017) Feature selection by maximizing independent classification information. IEEE Trans Knowl Data Eng 29(4):828–841. https://doi.org/10.1109/TKDE.2017.2650906

    Article  Google Scholar 

  20. Salem OAM, Liu F, Chen Y-PP et al (2021) Feature selection and threshold method based on fuzzy joint mutual information. Int J Approx Reason 132:107–126. https://doi.org/10.1016/j.ijar.2021.01.003

    Article  MathSciNet  MATH  Google Scholar 

  21. Emrah H, Bing X, Mengjie Z (2018) Differential evolution for filter feature selection based on information theory and feature ranking. Knowl Based Syst 140:103–119. https://doi.org/10.1016/j.knosys.2017.10.028

    Article  Google Scholar 

  22. Li Z (2021) A new feature selection using dynamic interaction. Pattern Anal Appl 24(1):203–215. https://doi.org/10.1007/s10044-020-00916-2

    Article  Google Scholar 

  23. Xie J-Y, Wang M-Z, Zhou Y et al (2019) Differential expression gene selection algorithms for unbalanced gene datasets. Chin J Comput 42(06):1232–1251. https://doi.org/10.11897/SP.J.1016.2019.01232

    Article  Google Scholar 

  24. Yang HH, Moody J (1999) Data visualization and feature selection: new algorithms for nonGaussian data. In: Proceedings of the 12th international conference on neural information processing systems. MIT Press, Denver, CO, pp 687–693

  25. Gao W, Hu L, Zhang P et al (2018) Feature selection considering the composition of feature relevancy. Pattern Recognit Lett 112:70–74. https://doi.org/10.1016/j.patrec.2018.06.005

    Article  Google Scholar 

  26. François F (2004) Fast binary feature selection with conditional mutual information. J Mach Learn Res 5:1531–1555

    MathSciNet  MATH  Google Scholar 

  27. Mohamed B, Yulia H, Rossitza S (2015) Feature selection using Joint mutual information maximisation. Expert Syst Appl 42(22):8520–8532. https://doi.org/10.1016/j.eswa.2015.07.007

    Article  Google Scholar 

  28. Lijun X, Guo J, Xiangyuan Gu (2019) Algorithm for selection of features based on dynamic weights using redundancy. J Xidian Univ 46(05):155–161. https://doi.org/10.19665/j.issn1001-2400.2019.05.022

    Article  Google Scholar 

  29. Zhang P, Gao W, Hu J et al (2021) A conditional-weight joint relevance metric for feature relevancy term. Eng Appl Artif Intell 106:104481. https://doi.org/10.1016/j.engappai.2021.104481

    Article  Google Scholar 

  30. Chen Z, Wu C, Zhang Y, Huang Z, Bin Ran MZ, Lyu N (2015) Feature selection with redundancy-complementariness dispersion. Knowl Based Syst 89:203–217. https://doi.org/10.1016/j.knosys.2015.07.004

    Article  Google Scholar 

  31. Dina R, Abecasis GR, Glaser B et al (2010) Functional gene group analysis reveals a role of synaptic heterotrimeric g proteins in cognitive ability. Am J Hum Genet 86(2):113–125. https://doi.org/10.1016/j.ajhg.2009.12.006

    Article  Google Scholar 

  32. Zhang L, Chen X (2021) Feature selection methods based on symmetric uncertainty coefficients and independent classification information. IEEE Access 9:13845–13856. https://doi.org/10.1109/access.2021.3049815

    Article  Google Scholar 

  33. Lin X, Li C, Ren W et al (2019) A new feature selection method based on symmetrical uncertainty and interaction gain. Comput Biol Chem 83:107149. https://doi.org/10.1016/j.compbiolchem.2019.107149

    Article  MathSciNet  Google Scholar 

  34. Guanglu S, Jiabin Li, Jian D et al (2018) Feature selection for IoT based on maximal information coefficient. Futur Gener Comput Syst 89:606–616. https://doi.org/10.1016/j.future.2018.05.060

    Article  Google Scholar 

  35. Lewis DD (1992) Feature selection and feature extraction for text categorization. In: Proceedings of the workshop on speech and natural language. Association for Computational Linguistics, Harriman, pp 212–217. https://doi.org/10.3115/1075527.1075574

  36. Marko R-Š, Igor K (2003) Theoretical and empirical analysis of ReliefF and RReliefF. Mach Learn 53(1):23–69. https://doi.org/10.1023/A:1025667309714

    Article  MATH  Google Scholar 

  37. Juanying X, Mingzhao W, Ying Z et al (2014) Several feature selection algorithms based on the discernibility of a feature subset and support vector machines. Chin J Comput 37(08):1704–1718

    Google Scholar 

  38. Hanchuan P, Fuhui L, Chris D (2005) Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy. IEEE Trans Pattern Anal Mach Intell 27(8):1226–1238. https://doi.org/10.1109/TPAMI.2005.159

    Article  Google Scholar 

  39. Battiti R (1994) Using mutual information for selecting features in supervised neural net learning. IEEE Trans Neural Netw 5(4):537–550. https://doi.org/10.1109/72.298224

    Article  Google Scholar 

  40. Lin D, Tang X (2006) Conditional infomax learning: an integrated framework for feature extraction and fusion. In: Proceedings of the 9th European conference on computer vision—volume part I. Springer, Graz, pp 68–82. https://doi.org/10.1007/11744023_6

  41. Gao W, Hu L, Zhang P et al (2018) Feature selection by integrating two groups of feature evaluation criteria. Expert Syst Appl 110:11–19. https://doi.org/10.1016/j.eswa.2018.05.029

    Article  Google Scholar 

  42. Ping Z, Wanfu G, Guixia L (2018) Feature selection considering weighted relevancy. Appl Intell 48(12):4615–4625. https://doi.org/10.1007/s10489-018-1239-6

    Article  Google Scholar 

  43. Gao W, Hu L, Zhang P (2018) Class-specific mutual information variation for feature selection. Pattern Recogn 79:328–339. https://doi.org/10.1016/j.patcog.2018.02.020

    Article  Google Scholar 

  44. Gu X, Guo J, Xiao L, Li C (2022) Conditional mutual information-based feature selection algorithm for maximal relevance minimal redundancy. Appl Intell 52(2):1436–1447. https://doi.org/10.1007/s10489-021-02412-4

    Article  Google Scholar 

  45. Hongqiang L, Mingxi W, Jiuqiang H et al (2017) A filter feature selection method based on the maximal information coefficient and gram-Schmidt orthogonalization for biomedical data mining. Comput Biol Med 89:264–274. https://doi.org/10.1016/j.compbiomed.2017.08.021

    Article  Google Scholar 

  46. Gao W, Hu L, Zhang P (2020) Feature redundancy term variation for mutual information-based feature selection. Appl Intell 50(4):1272–1288. https://doi.org/10.1007/s10489-019-01597-z

    Article  Google Scholar 

  47. Zhou H, Wang X, Zhang Y (2020) Feature selection based on weighted conditional mutual information. Appl Comput Inform. https://doi.org/10.1016/j.aci.2019.12.003

    Article  Google Scholar 

  48. Zhou H, Wang X, Zhu R (2022) Feature selection based on mutual information with correlation coefficient. Appl Intell 52(5):5457–5474. https://doi.org/10.1007/s10489-021-02524-x

    Article  Google Scholar 

  49. Liu Yi, Cao J-J, Diao X-C et al (2018) Survey on stability of feature selection. J Softw 29(09):2559–2579. https://doi.org/10.13328/j.cnki.jos.005394

    Article  MathSciNet  MATH  Google Scholar 

Download references

Funding

This study was supported by Jiangsu University of Technology Doctoral Research Start-up Fund (Grant No. KYY19042).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L. A Feature Selection Method Using Conditional Correlation Dispersion and Redundancy Analysis. Neural Process Lett 55, 7175–7209 (2023). https://doi.org/10.1007/s11063-023-11256-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11063-023-11256-7

Keywords

Navigation