Skip to main content
Log in

Multi-class Motor Imagery Recognition of Single Joint in Upper Limb Based on Multi-domain Feature Fusion

  • Published:
Neural Processing Letters Aims and scope Submit manuscript

Abstract

Aiming at the difficulties in extracting effective features and low classification accuracy in the current multi-class motor imagery recognition, this paper proposes a multi-class motor imagery recognition method based on the combination of multi-domain feature fusion and twin support vector machine (TWSVM). First, the Autoregressive (AR) model, the bispectrum analysis method, and the common spatial pattern method are used to extract the features of the signal in temporal domain, frequency domain, and space domain, and construct a joint feature; then use the kernel principal component analysis to fuse the joint feature, the fusion features are generated by extracting the principal components whose cumulative contribution rate is more than 95%; Finally, the fusion features are sent to TWSVM optimized by bat algorithm for classification of the EEG, obtain an average recognition rate of 92.38%, which provides an effective method for multi-class motor imagery recognition, which will greatly promote in practical application based on BCI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Tavakolan M, Frehlick Z, Yong X et al (2017) Classifying three imaginary states of the same upper extremity using time-domain features. PLoS ONE 12(3):e0174161. https://doi.org/10.1371/journal.pone.0174161

    Article  Google Scholar 

  2. Hamedi M, Salleh S H, Noor AM, et al (2014) Neural network-based three-class motor imagery classification using time-domain features for BCI applications. In: 2014 IEEE Region 10 Symposium. IEEE. pp: 204–207. https://doi.org/10.1109/tenconspring.2014.6863026

  3. Jin J, Liu C, Daly I et al (2020) Bispectrum-based channel selection for motor imagery based brain-computer interfacing. IEEE Trans Neural Syst Rehabil Eng 28(10):2153–2163. https://doi.org/10.1109/TNSRE.2020.3020975

    Article  Google Scholar 

  4. Yuan H, Doud A, Gururajan A, He B (2008) Cortical imaging of event-related (de) synchronization during online control of brain-computer interface using minimum-norm estimates in frequency domain. IEEE Trans Neural Syst Rehabil Eng 16(5):425–431. https://doi.org/10.1109/TNSRE.2008.2003384

    Article  Google Scholar 

  5. Cheng L, Li D, Li X, Yu S (2019) The optimal wavelet basis function selection in feature extraction of motor imagery electroencephalogram based on wavelet packet transformation. IEEE Access 7:174465–174481. https://doi.org/10.1109/ACCESS.2019.2953972

    Article  Google Scholar 

  6. Lee D, Park SH, Lee SG (2017) Improving the accuracy and training speed of motor imagery brain–computer interfaces using wavelet-based combined feature vectors and Gaussian mixture model-supervectors. Sensors 17(10):2282. https://doi.org/10.3390/s17102282

    Article  Google Scholar 

  7. Jiao Y, Zhou T, Yao L et al (2020) Multi-view multi-scale optimization of feature representation for EEG classification improvement. IEEE Trans Neural Syst Rehabil Eng 28(12):2589–2597. https://doi.org/10.1109/TNSRE.2020.3040984

    Article  Google Scholar 

  8. Dong E, Zhou K, Tong J et al (2020) A novel hybrid kernel function relevance vector machine for multi-task motor imagery EEG classification. Biomed Signal Process Control 60:101991. https://doi.org/10.1016/j.bspc.2020.101991

    Article  Google Scholar 

  9. Xu C, Sun C, Jiang G et al (2020) Two-level multi-domain feature extraction on sparse representation for motor imagery classification. Biomed Signal Process Control 62:102160. https://doi.org/10.1016/j.bspc.2020.102160

    Article  Google Scholar 

  10. Lee SB, Kim HJ, Kim H et al (2019) Comparative analysis of features extracted from EEG spatial, spectral and temporal domains for binary and multiclass motor imagery classification. Inform Sci 502:190–200. https://doi.org/10.1016/j.ins.2019.06.008

    Article  Google Scholar 

  11. Tan C, Sun F, Zhang W, et al (2017) Spatial and spectral features fusion for EEG classification during motor imagery in BCI. In: 2017 IEEE EMBS international conference on biomedical and health informatics (BHI). IEEE pp: 309–312. https://doi.org/10.1109/bhi.2017.7897267

  12. Tan P, Wang X, Wang Y (2020) Dimensionality reduction in evolutionary algorithms-based feature selection for motor imagery brain-computer interface given. Swarm Evol Comput 52:100597. https://doi.org/10.1016/j.swevo.2019.100597

    Article  Google Scholar 

  13. Khateeb M, Anwar SM, Alnowami M (2021) Multi-domain feature fusion for emotion classification using DEAP dataset. IEEE Access 9:12134–12142. https://doi.org/10.1109/ACCESS.2021.3051281

    Article  Google Scholar 

  14. Lu R-R, Zheng M-X et al (2020) Motor imagery based brain-computer interface control of continuous passive motion for wrist extension recovery in chronic stroke patients. Neurosci Lett 718:134727. https://doi.org/10.1016/j.neulet.2019.134727

    Article  Google Scholar 

  15. Ra A, Ha B, Mid A (2019) EEG-based BCI system for decoding finger movements within the same hand. Neurosci Lett 698:113–120. https://doi.org/10.1016/j.neulet.2018.12.045

    Article  Google Scholar 

  16. Edelman BJ, Baxter B, He B (2015) EEG source imaging enhances the decoding of complex right hand motor imagery tasks. IEEE Trans Biomed Eng 63(1):4–14. https://doi.org/10.1109/TBME.2015.2467312

    Article  Google Scholar 

  17. You Y, Chen W, Zhang T (2020) Motor imagery EEG classification based on flexible analytic wavelet transform. Biomed Signal Process Control 62:102069. https://doi.org/10.1016/j.bspc.2020.102069

    Article  Google Scholar 

  18. Togha MM, Salehi MR, Abiri E (2019) Improving the performance of the motor imagery-based brain-computer interfaces using local activities estimation. Biomed Signal Process Control 50:52–61. https://doi.org/10.1016/j.bspc.2019.01.008

    Article  Google Scholar 

  19. Atyabi A, Shic F, Naples A (2016) Mixture of autoregressive modeling orders and its implication on single trial EEG classification. Exp Syst Appl 65:164–180. https://doi.org/10.1016/j.eswa.2016.08.044

    Article  Google Scholar 

  20. Li Y, Liu Q, Tan SR et al (2016) High-resolution time-frequency analysis of EEG signals using multiscale radial basis functions. Neurocomputing 195:96–103. https://doi.org/10.1016/j.neucom.2015.04.128

    Article  Google Scholar 

  21. Abo-Zahhad M, Ahmed SM, Abbas SN (2016) A new multi-level approach to EEG based human authentication using eye blinking. Pattern Recogn Lett 82:216–225. https://doi.org/10.1016/j.patrec.2015.07.034

    Article  Google Scholar 

  22. Nikias CL, Raghuveer MR (1987) Bispectrum estimation: a digital signal processing framework. Proc IEEE 75(7):869–891. https://doi.org/10.1109/PROC.1987.13824

    Article  Google Scholar 

  23. Dragomiretskiy K, Zosso D (2014) Variational Mode Decomposition. IEEE Trans Signal Process 62(3):531–544

    Article  MathSciNet  MATH  Google Scholar 

  24. Rout SK, Biswal PK (2020) An efficient error-minimized random vector functional link network for epileptic seizure classification using VMD. Biomed Signal Process Control 57:101787. https://doi.org/10.1016/j.bspc.2019.101787

    Article  Google Scholar 

  25. Taran S, Bajaj V (2018) Clustering variational mode decomposition for identification of focal EEG signals. IEEE Sensors Lett 2(4):1–4. https://doi.org/10.1109/lsens.2018.2872415

    Article  Google Scholar 

  26. Khare SK, Bajaj V (2021) An evolutionary optimized variational mode decomposition for emotion recognition. IEEE Sens J 21(2):2035–2042. https://doi.org/10.1109/JSEN.2020.3020915

    Article  Google Scholar 

  27. Shahid S, Prasad G (2011) Bispectrum-based feature extraction technique for devising a practical brain-computer interface. J Neural Eng 8(2):025014. https://doi.org/10.1088/1741-2560/8/2/025014

    Article  Google Scholar 

  28. Asensio-Cubero J, Gan JQ, Palaniappan R (2013) Extracting optimal tempo-spatial features using local discriminant bases and common spatial patterns for brain computer interfacing. Biomed Signal Process Control 8(6):772–778. https://doi.org/10.1016/j.bspc.2013.07.004

    Article  Google Scholar 

  29. Wold S, Esbensen K, Geladi P (1987) Principal component analysis. Chemom Intell Lab Syst 2(1–3):37–52

    Article  Google Scholar 

  30. Cao LJ, Chua KS, Chong WK et al (2003) A comparison of PCA, KPCA and ICA for dimensionality reduction in support vector machine. Neurocomputing 55(1–2):321–336. https://doi.org/10.1016/s0925-2312(03)00433-8

    Article  Google Scholar 

  31. Jm A, Ly B, Qs C (2021) Adaptive robust learning framework for twin support vector machine classification: ScienceDirect. Knowledge-Based Syst 211:106536. https://doi.org/10.1016/j.knosys.2020.106536

    Article  Google Scholar 

  32. Tomar D (2015) Agarwal S (2015) A comparison on multi-class classification methods based on least squares twin support vector machine. Knowledge-Based Syst 81:131–147. https://doi.org/10.1016/j.knosys.2015.02.009

    Article  Google Scholar 

  33. Kumar NS, Mahil J, Shiji AS et al (2020) Detection of autism in children by the EEG behavior using hybrid bat algorithm-based ANFIS classifier. Circuits Syst Signal Process 39(2):674–697. https://doi.org/10.1007/s00034-019-01197-9

    Article  Google Scholar 

  34. Selim S, Tantawi M, Shedeed H, Badr A (2016) Reducing execution time for real-time motor imagery based BCI systems. Int Conf Adv Intell Syst Inform. https://doi.org/10.1007/978-3-319-48308-5_53

    Article  Google Scholar 

  35. Xiong Q, Zhang X, Wang WF, Gu Y (2020) A parallel algorithm framework for feature extraction of EEG Signals on MPI. Comput Math Methods Med. https://doi.org/10.1155/2020/9812019

    Article  Google Scholar 

  36. Tao Z, Chen W, Li M (2017) AR based quadratic feature extraction in the VMD domain for the automated seizure detection of EEG using random forest classifier. Biomed Signal Process Control 31:550–559. https://doi.org/10.1016/j.bspc.2016.10.001

    Article  Google Scholar 

  37. Wu L, Wang T, Wang Q et al (2019) EEG signal processing based on multivariate empirical mode decomposition and common spatial pattern hybrid algorithm. Int J Pattern Recognit Artif Intell 33(9):1959030. https://doi.org/10.1142/S0218001419590304

    Article  Google Scholar 

  38. Kotoky N, Hazarika SM (2014) Bispectrum analysis of EEG for motor imagery classification. In: International conference on signal processing and integrated networks. IEEE. pp: 581–586

  39. Blankertz B, Muller KR, Krusienski DJ et al (2006) Te BCIcompetition III: validating alternative approaches to actual BCI problems. IEEE Trans Neural Syst Rehabil Eng 14(2):153–159. https://doi.org/10.1109/TNSRE.2006.875642

    Article  Google Scholar 

  40. Grosse Wentrup M, Buss M (2008) Multiclass common spatial patterns and information theoreticfeature extraction. IEEE Trans Biomed Eng 55(8):1991–2000. https://doi.org/10.1109/TBME.2008.921154

    Article  Google Scholar 

  41. Schlögl A, Lee F, Bischof H et al (2005) Characterization of four-class motor imagery EEG data for the BCI-competition 2005. J Neural Eng 2(4):1–9. https://doi.org/10.1088/1741-2560/2/4/L02

    Article  Google Scholar 

  42. Koprinska I (2009) Feature selection for brain-computer interfaces[C]. In: Pacific-Asia conferenceon knowledge discovery and data mining. Springer, Berlin, Heidelberg. 106–117. https://doi.org/10.1007/978-3-642-14640-4_8

Download references

Acknowledgements

We thank all the subjects who participated in the experiment. We thank Kai Zhao for his guidance on the EEG data acquisition.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhen Yuan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guan, S., Yuan, Z., Wang, F. et al. Multi-class Motor Imagery Recognition of Single Joint in Upper Limb Based on Multi-domain Feature Fusion. Neural Process Lett 55, 8927–8945 (2023). https://doi.org/10.1007/s11063-023-11185-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11063-023-11185-5

Keywords

Navigation