Skip to main content
Log in

Saliency Transfer Learning and Central-Cropping Network for Prostate Cancer Classification

  • Published:
Neural Processing Letters Aims and scope Submit manuscript

Abstract

Classifying the malignancy of prostate lesions from MRI images is crucial in diagnosing prostate cancer at the early stage. In clinical examination, radiologists usually focus on the most salient and distinctive regions to diagnose. However, in many state-of-the-art CNN based methods, the conventional convolution operation extracts the features equally importantly, which leads to an excessive feature learning process on the uninterested regions. To address this challenge, we propose a saliency transfer learning network that allows the model to focus on the salient and influential regions automatically. Moreover, a pyramid central-crop pooling scheme is employed to extract the multi-scale, centric-visual, and salient features from different layers. To validate the effectiveness of the proposed model, extensive experiments are conducted on prostate cancer and non-cancer MRI dataset, the experimental results demonstrate that our proposed model could gain competitive performance (Accuracy 94.9%, Sensitivity 96.7%, Specificity 93.5%, AUC 0.989) on this classification task.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Prates C, Sousa S, Oliveira C, Ikram S (2011) Prostate metastatic bone cancer in an Egyptian Ptolemaic mummy, a proposed radiological diagnosis. Int J Paleopathol 1(2):98–103

    Article  Google Scholar 

  2. Siegel RL, Miller KD, Fedewa SA, Ahnen DJ, Meester RG, Barzi A, Jemal A (2017) Colorectal cancer statistics, 2017. CA Cancer J Clin 67(3):177–193

    Article  Google Scholar 

  3. Zhang G, Shen X, Zhang Y, Luo Y, Luo J, Zhu D, Yang H, Wang W, Zhao B, Lu J (2021) Cross-modal prostate cancer segmentation via self-attention distillation. IEEE J Biomed Health Inform

  4. Jemal A, Siegel R, Ward E, Hao Y, Xu J, Thun M et al (2009) Cancer statistics. Ca Cancer J Clin 59(4):225–249

    Article  Google Scholar 

  5. Yuan Y, Qin W, Buyyounouski M, Ibragimov B, Hancock S, Han B, Xing L (2019) Prostate cancer classification with multiparametric MRI transfer learning model. Med Phys 46(2):756–765

    Article  Google Scholar 

  6. Fehr D, Veeraraghavan H, Wibmer A, Gondo T, Matsumoto K, Vargas HA, Sala E, Hricak H, Deasy JO (2015) Automatic classification of prostate cancer Gleason scores from multiparametric magnetic resonance images. Proc Natl Acad Sci 112(46):E6265–E6273

    Article  Google Scholar 

  7. de Rooij M, Hamoen EH, Fütterer JJ, Barentsz JO, Rovers MM (2014) Accuracy of multiparametric MRI for prostate cancer detection: a meta-analysis. Am J Roentgenol 202(2):343–351

    Article  Google Scholar 

  8. Nketiah G, Elschot M, Kim E, Teruel JR, Scheenen TW, Bathen TF, Selnæs KM (2017) T2-weighted MRI-derived textural features reflect prostate cancer aggressiveness: preliminary results. Eur Radiol 27(7):3050–3059

    Article  Google Scholar 

  9. Huang X, Chen M, Liu P (2019) Recognition of transrectal ultrasound prostate image based on HOG-LBP. In: 2019 IEEE 13th international conference on anti-counterfeiting, security, and identification (ASID). IEEE, pp 183–187

  10. Farooq MT, Shaukat A, Akram U, Waqas O, Ahmad M (2017) Automatic Gleason grading of prostate cancer using gabor filter and local binary patterns. In: 2017 40th international conference on telecommunications and signal processing (TSP). IEEE, pp 642–645

  11. Viswanath SE, Chirra PV, Yim MC, Rofsky NM, Purysko AS, Rosen MA, Bloch BN, Madabhushi A (2019) Comparing radiomic classifiers and classifier ensembles for detection of peripheral zone prostate tumors on t2-weighted MRI: a multi-site study. BMC Med Imaging 19(1):1–12

    Article  Google Scholar 

  12. Wibmer A, Hricak H, Gondo T, Matsumoto K, Veeraraghavan H, Fehr D, Zheng J, Goldman D, Moskowitz C, Fine SW et al (2015) Haralick texture analysis of prostate MRI: utility for differentiating non-cancerous prostate from prostate cancer and differentiating prostate cancers with different Gleason scores. Eur Radiol 25(10):2840–2850

    Article  Google Scholar 

  13. Le MH, Chen J, Wang L, Wang Z, Liu W, Cheng K-TT, Yang X (2017) Automated diagnosis of prostate cancer in multi-parametric MRI based on multimodal convolutional neural networks. Phys Med Biol 62(16):6497

    Article  Google Scholar 

  14. Yang X, Liu C, Wang Z, Yang J, Le Min H, Wang L, Cheng K-TT (2017) Co-trained convolutional neural networks for automated detection of prostate cancer in multi-parametric MRI. Med Image Anal 42:212–227

    Article  Google Scholar 

  15. Wang Z, Liu C, Cheng D, Wang L, Yang X, Cheng K-T (2018) Automated detection of clinically significant prostate cancer in MP-MRI images based on an end-to-end deep neural network. IEEE Trans Med Imaging 37(5):1127–1139

    Article  Google Scholar 

  16. Reda I, Khalil A, Elmogy M, Abou El-Fetouh A, Shalaby A, Abou El-Ghar M, Elmaghraby A, Ghazal M, El-Baz A (2018) Deep learning role in early diagnosis of prostate cancer. Technol Cancer Res Treat 17:1533034618775530

    Article  Google Scholar 

  17. Lapa P, Gonçalves I, Rundo L, Castelli M (2019) Semantic learning machine improves the CNN-based detection of prostate cancer in non-contrast-enhanced MRI. In: Proceedings of the genetic and evolutionary computation conference companion, pp 1837–1845

  18. Song Y, Zhang Y-D, Yan X, Liu H, Zhou M, Hu B, Yang G (2018) Computer-aided diagnosis of prostate cancer using a deep convolutional neural network from multiparametric MRI. J Magn Reson Imaging 48(6):1570–1577

    Article  Google Scholar 

  19. Zhong X, Cao R, Shakeri S, Scalzo F, Lee Y, Enzmann DR, Wu HH, Raman SS, Sung K (2019) Deep transfer learning-based prostate cancer classification using 3 tesla multi-parametric MRI. Abdominal Radiol 44(6):2030–2039

    Article  Google Scholar 

  20. Abraham B, Nair MS (2018) Computer-aided classification of prostate cancer grade groups from MRI images using texture features and stacked sparse autoencoder. Comput Med Imaging Graph 69:60–68

    Article  Google Scholar 

  21. Abraham B, Nair MS (2019) Computer-aided grading of prostate cancer from MRI images using convolutional neural networks. J Intell Fuzzy Syst 36(3):2015–2024

    Article  Google Scholar 

  22. Fakoor R, Ladhak F, Nazi A, Huber M (2013) Using deep learning to enhance cancer diagnosis and classification. In: Proceedings of the international conference on machine learning, vol 28. ACM, New York

  23. Wang X, Yang W, Weinreb J, Han J, Li Q, Kong X, Yan Y, Ke Z, Luo B, Liu T et al (2017) Searching for prostate cancer by fully automated magnetic resonance imaging classification: deep learning versus non-deep learning. Sci Rep 7(1):1–8

    Google Scholar 

  24. Shin H-C, Roth HR, Gao M, Lu L, Xu Z, Nogues I, Yao J, Mollura D, Summers RM (2016) Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning. IEEE Trans Med Imaging 35(5):1285–1298

    Article  Google Scholar 

  25. Tajbakhsh N, Shin JY, Gurudu SR, Hurst RT, Kendall CB, Gotway MB, Liang J (2016) Convolutional neural networks for medical image analysis: full training or fine tuning? IEEE Trans Med Imaging 35(5):1299–1312

    Article  Google Scholar 

  26. Liu S, Zheng H, Feng Y, Li W (2017) Prostate cancer diagnosis using deep learning with 3d multiparametric MRI. In: Medical imaging 2017: computer-aided diagnosis, vol 10134. International Society for Optics and Photonics, p 1013428

  27. Wang W, Shen J (2017) Deep visual attention prediction. IEEE Trans Image Process 27(5):2368–2378

    Article  MathSciNet  Google Scholar 

  28. Chen L, Zhang H, Xiao J, Nie L, Shao J, Liu W, Chua T-S (2017) SCA-CNN: spatial and channel-wise attention in convolutional networks for image captioning. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 5659–5667

  29. Itti L, Koch C, Niebur E (1998) A model of saliency-based visual attention for rapid scene analysis. IEEE Trans Pattern Anal Mach Intell 20(11):1254–1259

    Article  Google Scholar 

  30. Lin T-Y, Dollár P, Girshick R, He K, Hariharan B, Belongie S (2017) Feature pyramid networks for object detection. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 2117–2125

  31. Zhao H, Shi J, Qi X, Wang X, Jia J (2017) Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 2881–2890

  32. Simonyan K, Zisserman A (2014) Very deep convolutional networks for large-scale image recognition. arXiv:1409.1556

  33. Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, Erhan D, Vanhoucke V, Rabinovich A (2015) Going deeper with convolutions. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 1–9

  34. Huang G, Liu Z, Van Der Maaten L, Weinberger KQ (2017) Densely connected convolutional networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 4700–4708

  35. Gao S, Cheng M-M, Zhao K, Zhang X-Y, Yang M-H, Torr PH (2019) Res2net: a new multi-scale backbone architecture. IEEE Trans Pattern Anal Mach Intell 43:652–662

    Article  Google Scholar 

  36. Li X, Wang W, Hu X, Yang J (2019) Selective kernel networks. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp 510–519

  37. Wang F, Jiang M, Qian C, Yang S, Li C, Zhang H, Wang X, Tang X (2017) Residual attention network for image classification. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 3156–3164

  38. Hu J, Shen L, Sun G (2018) Squeeze-and-excitation networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 7132–7141

Download references

Acknowledgements

This work was supported by the Shanghai Sailing Program (21YF1431600), and the General Program of the National Natural Science Foundation of China (NSFC) under Grant 62102259. The authors declared that they have no conflicts of interest in this work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yongyong Chen, Peipei Shan or Binghui Zhao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, G., Jia, M., Gao, L. et al. Saliency Transfer Learning and Central-Cropping Network for Prostate Cancer Classification. Neural Process Lett 55, 2391–2403 (2023). https://doi.org/10.1007/s11063-022-10999-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11063-022-10999-z

Keywords

Navigation