Skip to main content
Log in

Collaborative Representation Based Discriminant Local Preserving Projection

  • Published:
Neural Processing Letters Aims and scope Submit manuscript

Abstract

Linear dimensionality reduction techniques have been applied widely in data classification and recognition to extract low-dimensional features. The methods exploit a simple linear function to transform high dimensional data into a low dimensional subspace while preserving the statistical or geometrical characteristics of high dimensional datasets. The neighborhood relationship is one of the most important geometrical characteristics. The original dimensionality reduction algorithms usually set neighborhood parameters manually when defining neighborhood relationships. However, the methods based on collaborative representation select the neighbors automatically. A supervised dimensionality reduction method proposed in this paper is named Collaborative Representation based Discriminant Local Preserving Projection (CR-DLPP). First, it uses collaborative representation to select potential neighbors automatically for samples reconstruction. Then, a similarity matrix is built by calculating the Gaussian distance between the reconstructed samples. Finally, the Maximum Margin Criterion (MMC) is adopted to design an objective function, and the optimal projection matrix is obtained via eigenvalue decomposition. The results of extensive experiments on several benchmark datasets show that CR-DLPP can achieve better performance than several other typical linear dimensionality reduction methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Wei Y, Xia W, Lin M et al (2016) HCP: a flexible CNN framework for multi-label image classification. IEEE Trans Softw Eng 38:1901–1907

    Google Scholar 

  2. Hannun A, Case C, Casper J et al (2014) Deep speech: scaling up end-to-end speech recognition. arXiv 1412.5567.

  3. Karpathy A, Toderici G, Shetty S et al (2014) Large-scale video classification with convolutional neural networks. Proceedings of the IEEE conference on computer vision and pattern recognition. 1725–1732

  4. Ayesha S, Hanif MK, Talib R (2020) Overview and comparative study of dimensionality reduction techniques for high dimensional data. Inform Fusion 59:44–58. https://doi.org/10.1016/j.inffus.2020.01.005

    Article  Google Scholar 

  5. Ringnér M (2008) What is principal component analysis? Nat Biotechnol 26:303–304

    Article  Google Scholar 

  6. Ahmadkhani S, Adibi P (2016) Face recognition using supervised probabilistic principal component analysis mixture model in dimensionality reduction without loss framework. IET Comput Vis 10:193–201

    Article  Google Scholar 

  7. Belhumeur PN, Hespanha JP, Kriegman DJ (1997) Eigenfaces vs. fisherfaces: recognition using class specific linear projection. IEEE Trans Pattern Anal Mach Intell 7:711–720

    Article  Google Scholar 

  8. Tharwat A, Gaber T, Ibrahim A et al (2017) Linear discriminant analysis: a detailed tutorial. AI Commun 30:169–190

    Article  MathSciNet  Google Scholar 

  9. Chen L, Liao H, Ko M et al (2000) A new LDA-based face recognition system which can solve the small sample size problem. Pattern Recognit 33:1713–1726

    Article  Google Scholar 

  10. Li H, Jiang T, Zhang K (2006) Efficient and robust feature extraction by maximum margin criterion. IEEE Trans Neural Netw 17:157–165

    Article  Google Scholar 

  11. Liu J, Chen S, Tan X et al (2007) Comments on ‘‘Efficient and robust feature extraction by maximum margin criterion”. IEEE Trans Neural Netw 18:1862–1864

    Article  Google Scholar 

  12. Howland P, Wang J, Park H (2006) Solving the small sample size problem in face recognition using generalized discriminant analysis. Pattern Recognit 39:277–287

    Article  Google Scholar 

  13. He X, Yan S, Hu Y et al (2003) Learning a locality preserving subspace for visual recognition. Proceeding of ninth IEEE international conference on computer vision. 385–392

  14. He X, Niyogi P (2004) Locality preserving projections. In: Advances in Neural Information Processing Systems, pp 153–160

  15. Wang H, Che S, Hu Z, Zheng W (2008) Locaility-preserved maximum information projection. IEEE Trans Neural Netw 19:571–585

    Article  Google Scholar 

  16. Yu W, Teng X, Liu C (2006) Face recognition using discriminant locality preserving projections. Image Vis Comput 24:239–248

    Article  Google Scholar 

  17. Yang L, Gong W, Gu X et al (2008) Null space discriminant locality preserving projections for face recognition. Neurocomputing 71:3644–3649

    Article  Google Scholar 

  18. Ruisheng R, Ren Y, Zhang S, Fang B (2021) A novel discriminant locality preserving projections method. J Math Imaging Vis 63:541–554

    Article  MathSciNet  MATH  Google Scholar 

  19. Ran R, Feng J, Zhang S, Fang B (2020) A general matrix function dimensionality reduction framework and extension for manifold learning. IEEE Trans Cybern 99:1–12

    Google Scholar 

  20. Yan S, Xu D, Zhang B et al (2006) Graph embedding and extensions: a general framework for dimensionality reduction. IEEE Trans Pattern Anal Mach Intell 29:40–51

    Article  Google Scholar 

  21. Goyal P, Ferrara E (2018) Graph embedding techniques. Appl Perform: A Surv Knowl-Based Syst 151:78–94

    Google Scholar 

  22. Gou J, Xue Y, Ma H et al (2020) Double graphs-based discriminant projections for dimensionality reduction. Neural Comput Appl 32:17533–17550

    Article  Google Scholar 

  23. Wang S, Ding C, Hsu C, Yang F (2020) Dimensionality reduction via preserving local information. Futur Gener Comput Syst 108:967–975

    Article  Google Scholar 

  24. Gou J, Yang Y, Yi Z et al (2020) Discriminative globality and locality preserving graph embedding for dimensionality reduction. Expert Syst Appl 144:113079

    Article  Google Scholar 

  25. Wright J, Yang AY, Ganesh A et al (2008) Robust face recognition via sparse representation. IEEE Trans Pattern Anal Mach Intell 31:210–227

    Article  Google Scholar 

  26. Wang Y, Tang Y, Li L et al (2019) Block sparse representation for pattern classification: theory, extensions and applications. Pattern Recognit 88:198–209

    Article  Google Scholar 

  27. Zhang Z, Xu Y, Yang J et al (2015) A survey of sparse representation: algorithms and applications. IEEE Access 3:490–530

    Article  Google Scholar 

  28. Zhang L, Yang M, Feng X et al. (2012) Collaborative representation based classification for face recognition. arXiv:1204.2358.

  29. Cai S, Zhang L, Zuo W (2016) A probabilistic collaborative representation based approach for pattern classification, Proceedings of the IEEE conference on computer vision and pattern recognition. 2950–2959.

  30. Gou J, Hou B, Qu W et al (2018) Several robust extensions of collaborative representation for image classification. Neurocomputing. https://doi.org/10.1016/j.neucom.2018.06.089

    Article  Google Scholar 

  31. Deng W, Hu J, Guo J (2018) Face recognition via collaborative representation: its discriminant nature and superposed representation. IEEE Trans Pattern Anal Mach Intell 40:2513–2521

    Article  Google Scholar 

  32. Qiao L, Chen S, Tan X (2010) Sparsity preserving projections with applications to face recognition. Pattern Recognit 43:331–341

    Article  MATH  Google Scholar 

  33. Gui J, Sun Z, Jia W et al (2012) Discriminant sparse neighborhood preserving embedding for face recognition. Pattern Recognit 45:2884–2893

    Article  MATH  Google Scholar 

  34. Liao M, Gu X (2020) Face recognition approach by subspace extended sparse representation and discriminative feature learning. Neurocomputing 373:35–49

    Article  Google Scholar 

  35. Gou J, Du L, Cheng K et al. (2016) Discriminative sparsity preserving graph embedding. Proceeding of 2016 IEEE congress on evolutionary computation (CEC).

  36. Zhang L, Yang M, Feng X (2011) Sparse representation or collaborative representation: which helps face recognition. Proceedings of IEEE conference on computer vision (ICCV) 471–478.

  37. Zhang W, Wang Z, Sun C (2015) A collaborative representation based projections method for feature extraction. Pattern Recognit 48:20–27

    Article  Google Scholar 

  38. Hua J, Wang H, Ren M, Huang H (2016) Dimension reduction using collaborative representation reconstruction based projections. Neurocomputing 193:1–6

    Article  Google Scholar 

  39. Wang L, Li M, Ji H, Li D (2019) When collaborative representation meets subspace projection: a novel supervised framework of graph construction augmented by anti-collaborative representation. Neurocomputing 328:157–170

    Article  Google Scholar 

  40. Pless R, Souvenir R (2009) A survey of manifold learning for images. IPSJ Trans Comput Vis Appl 1:83–94

    Article  Google Scholar 

  41. Huang P, Li T, Gao G et al (2018) Collaborative representation based local discriminant projection for feature extraction. Digit Signal Process 76:84–93

    Article  MathSciNet  Google Scholar 

  42. Gou J, Yang Y, Liu Y et al (2020) Collaborative representation-based locality preserving projections for image classification. J Eng 13:310–315

    Article  Google Scholar 

  43. Wang G, Gong L, Pang Y et al (2020) Dimensionality reduction using discriminant collaborative locality preserving projections. Neural Process Lett 51:611–638

    Article  Google Scholar 

  44. Wang G, Shi N (2020) Collaborative representation-based discriminant neighborhood projections for face recognition. Neural Comput Appl 32:5815–5832

    Article  Google Scholar 

  45. Yuan M, Feng D, Liu W, Xiao C (2016) Collaborative representation discriminant embedding for image classification. J Vis Commun Image Represent 41:212–224

    Article  Google Scholar 

  46. Horn RA, Johnson CR (1985) Matrix analysis. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  47. Magnus JR, Neudecker H (1999) Matrix differential calculus with applications in statistics and econometrics. Revised ed. Wiley, Chichester

    MATH  Google Scholar 

  48. Georghiades AS, Belhumeur PN, Kriegman D (2001) From few to many: illumination cone models for face recognition under variable lighting and pose. IEEE Trans Pattern Anal Mach Intell 23:643–660

    Article  Google Scholar 

  49. Phillips PJ, Moon H, Rizvi SA et al (2000) The FERET evaluation methodology for face recognition algorithms. IEEE Trans Pattern Anal Mach Intell 22:1090–1104

    Article  Google Scholar 

  50. Sim T, Baker S, Bsat M (2003) The CMU pose, illumination, and expression database. IEEE Trans Pattern Anal Mach Intell 25:1615–1618

    Article  Google Scholar 

  51. Nene SA, Nayar SK, Murase H (1996) Technical report CUCS-005–96, Columbia object image library (COIL-20).

  52. Guyon I, Gunn SR, Ben-Hur A, Dror G (2004) Result analysis of the NIPS 2003 Feature Selection Challenge. In: Advances in neural information processing systems, pp 545–552

  53. Bouzas D, Arvanitopoulos N, Tefas A (2015) Graph embedded nonparametric mutual information for supervised dimensionality reduction. IEEE Trans Neural Netw Learn Syst 26:951–963

    Article  MathSciNet  Google Scholar 

  54. Lu Y, Lai Z, Xu Y et al (2016) Low-rank preserving projections. IEEE Trans Cybern 46:1900–1913

    Article  Google Scholar 

  55. Liu Z, Wang J, Liu G, Zhang L (2019) Discriminative low-rank preserving projection for dimensionality reduction. Appl Soft Comput 85:105768

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to convey their thanks and appreciation to the National Natural Science Foundation of China [grant number 61971470] for supporting the work.

Funding

This work was supported by the National Natural Science Foundation of China [grant number 61971470].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dazheng Feng.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Su, T., Feng, D. & Hu, H. Collaborative Representation Based Discriminant Local Preserving Projection. Neural Process Lett 54, 3999–4026 (2022). https://doi.org/10.1007/s11063-022-10798-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11063-022-10798-6

Keywords

Navigation