Skip to main content
Log in

Exponential Synchronization of Delayed Switching Genetic Oscillator Networks via Mode-Dependent Partial Impulsive Control

  • Published:
Neural Processing Letters Aims and scope Submit manuscript

Abstract

This paper investigates the global exponential synchronization problem of switching genetic oscillator networks with time-varying delays by using a newly-designed partial impulsive control scheme. This scheme is only required to control partial molecules of each gene node, different from the traditional pinning impulsive control scheme, in which all the molecules of the chosen nodes are assumed to be under control. Besides, both the number of controlled molecules and the impulsive strength of the presented control scheme are mode-dependent, either identical or different with respect to different topologies. Based on the Lyapunov stability theory and comparison principle, the sufficient criteria for guaranteeing the exponential synchronization of genetic oscillator networks with finite arbitrarily switching topologies are established. Finally, two illustrative examples are presented to verify the main results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Pandiselvi S, Raja R, Cao J, Rajchakit G (2019) Stabilization of switched stochastic genetic regulatory networks with leakage and impulsive effects. Neural Process Lett 49(2):593–610

    Article  Google Scholar 

  2. Wang Y, Wang Z, Liang J, Li Y, Du M (2010) Synchronization of stochastic genetic oscillator networks with time delays and Markovian jumping parameters. Neurocomputing 73(13):2532–2539

    Article  Google Scholar 

  3. Wan X, Wang Z, Wu M, Liu X (2018) State estimation for discrete time-delayed genetic regulatory networks with stochastic noises under the round-robin protocols. IEEE Trans Nanobiosci 17(2):145–154

    Article  Google Scholar 

  4. Xiao M, Zheng WX, Jiang G (2018) Bifurcation and oscillatory dynamics of delayed cyclic gene networks including small RNAs. IEEE Trans Cybernetics 49(3):883–896

    Article  Google Scholar 

  5. Ling G, Guan ZH, He DX, Liao RQ, Zhang XH (2014) Stability and bifurcation analysis of new coupled repressilators in genetic regulatory networks with delays. Neural Netw 60:222–231

    Article  MATH  Google Scholar 

  6. McMillen D, Kopell N, Hasty J, Collins JJ (2002) Synchronizing genetic relaxation oscillators by intercell signaling. Proc Natl Acad Sci 99(2):679–684

    Article  Google Scholar 

  7. Shedden K, Cooper S (2002) Analysis of cell-cycle-specific gene expression in human cells as determined by microarrays and double-thymidine block synchronization. Proc Natl Acad Sci 99(7):4379–4384

    Article  Google Scholar 

  8. Chu LF, Mamott D, Ni Z, Bacher R, Liu C, Swanson S, Thomson JA (2019) An in vitro human segmentation clock model derived from Embryonic stem cells. Cell Rep 28(9):2247–2255

    Article  Google Scholar 

  9. Xu G, Bao H, Cao J (2020) Mean-square exponential input-to-state stability of stochastic gene regulatory networks with multiple time delays. Neural Process Lett 51(1):271–286

    Article  Google Scholar 

  10. Qiu J, Sun K, Yang C, Chen X, Chen X, Zhang A (2017) Finite-time stability of genetic regulatory networks with impulsive effects. Neurocomputing 219:9–14

    Article  Google Scholar 

  11. Syed Ali M, Vadivel R (2018) Decentralized event-triggered exponential stability for uncertain delayed genetic regulatory networks with Markov jump parameters and distributed delays. Neural Process Lett 47:1219–1252

    Article  Google Scholar 

  12. Wan X, Xu L, Fang H, Yang F, Li X (2014) Exponential synchronization of switched genetic oscillators with time-varying delays. J Franklin Inst 351(8):4395–4414

    Article  MathSciNet  MATH  Google Scholar 

  13. Wang Y, Hori Y, Hara S, Doyle F (2014) Intercellular delay regulates the collective period of repressively coupled gene regulatory oscillator networks. IEEE Trans Autom Control 59(1):211–216

    Article  MathSciNet  MATH  Google Scholar 

  14. Li C, Chen L, Aihara K (2007) Stochastic synchronization of genetic oscillator networks. BMC Syst Biol 1(1):6

    Article  Google Scholar 

  15. Zhou T, Chen L, Wang R (2005) A mechanism of synchronization in interacting multi-cell genetic systems. Phys. D 211(1–2):107–127

    Article  MathSciNet  MATH  Google Scholar 

  16. Zhang W, Tang Y, Fang JA, Zhu W (2011) Exponential cluster synchronization of impulsive delayed genetic oscillators with external disturbances. Chaos 21(4):043137

    Article  MATH  Google Scholar 

  17. Mirollo RE, Strogatz SH (1990) Synchronization of pulse-coupled biological oscillators. SIAM J Appl Math 50(6):1645–1662

    Article  MathSciNet  MATH  Google Scholar 

  18. Garciaojalvo J, Elowitz MB, Strogatz SH (2004) Modeling a synthetic multicellular clock: repressilators coupled by quorum sensing. Proc Natl Acad Sci USA 101(30):10955–10960

    Article  MathSciNet  MATH  Google Scholar 

  19. Ling G, Guan ZH, Hu B, Lai Q, Wu Y (2017) Multistability and bifurcation analysis of inhibitory coupled cyclic genetic regulatory networks with delays. IEEE Trans Nanobiosci 16(3):216–225

    Article  Google Scholar 

  20. Zhang W, Fang JA, Miao Q, Chen L, Zhu W (2013) Synchronization of Markovian jump genetic oscillators with nonidentical feedback delay. Neurocomputing 101:347–353

    Article  Google Scholar 

  21. Qiu J, Cao J (2009) Global synchronization of delay-coupled genetic oscillators. Neurocomputing 72(16–18):3845–3850

    Article  Google Scholar 

  22. Lu L, He B, Man C, Wang S (2015) Passive synchronization for Markov jump genetic oscillator networks with time-varying delays. Math Biosci 262:80–87

    Article  MathSciNet  MATH  Google Scholar 

  23. Zou C, Wang X (2020) Robust stability of delayed Markovian switching genetic regulatory networks with reaction–diffusion terms. Comput Math Appl 79(4):1150–1164

    Article  MathSciNet  MATH  Google Scholar 

  24. Luscombe NM, Babu MM, Yu H, Snyder M, Teichmann SA, Gerstein M (2004) Genomic analysis of regulatory network dynamics reveals large topological changes. Nature 431(7006):308–312

    Article  Google Scholar 

  25. Meng Q, Jiang H (2010) Robust stochastic stability analysis of Markovian switching genetic regulatory networks with discrete and distributed delays. Neurocomputing 74(1–3):362–368

    Article  Google Scholar 

  26. Zhang D, Yu L (2011) Passivity analysis for stochastic Markovian switching genetic regulatory networks with time-varying delays. Commun Nonlinear Sci 16(8):2985–2992

    Article  MathSciNet  MATH  Google Scholar 

  27. Chen H, Shi P, Lim CC (2016) Exponential synchronization for Markovian stochastic coupled neural networks of neutral-type via adaptive feedback control. IEEE Trans Neur Net Lear 28(7):1618–1632

    Article  MathSciNet  Google Scholar 

  28. Yu T, Wang H, Cao J et al (2020) On impulsive synchronization control for coupled inertial neural networks with pinning control. Neural Process Lett 51:2195–2210

    Article  Google Scholar 

  29. Guan ZH, Liu ZW, Feng G, Wang YW (2010) Synchronization of complex dynamical networks with time-varying delays via impulsive distributed control. IEEE Trans Circuits Inst 57(8):2182–2195

    MathSciNet  Google Scholar 

  30. Wu X, Huang L (2019) Pinning adaptive and exponential synchronization of fractional-order uncertain complex neural networks with time-varying delays. Neural Process Lett 50:2373–2388

    Article  Google Scholar 

  31. Suarez OJ, Vega CJ, Sanchez EN, Chen G, Elvira-Ceja JS, Rodriguez DI (2020) Neural sliding-mode pinning control for output synchronization for uncertain general complex networks. Automatica 112:108694

    Article  MathSciNet  MATH  Google Scholar 

  32. Li F, Sun J (2011) Stability analysis of a reduced model of the lac operon under impulsive and switching control. Nonlinear Anal Real 12(2):1264–1277

    Article  MathSciNet  MATH  Google Scholar 

  33. He DX, Ling G, Guan ZH, Hu B, Liao RQ (2018) Multisynchronization of coupled heterogeneous genetic oscillator networks via partial impulsive control. IEEE Trans Neur Net Lear 29(2):335–342

    Article  MathSciNet  Google Scholar 

  34. Lu J, Kurths J, Cao J, Mahdavi N, Huang C (2012) Synchronization control for nonlinear stochastic dynamical networks: pinning impulsive strategy. IEEE Trans Neur Net Lear 23(2):285–292

    Article  Google Scholar 

  35. Pan L (2020) Stochastic quasi-synchronization of delayed neural networks: pinning impulsive scheme. Neural Process Lett 51(1):947–962

    Article  Google Scholar 

  36. Tang Y, Gao H, Zhang W, Kurths J (2015) Leader-following consensus of a class of stochastic delayed multi-agent systems with partial mixed impulses. Automatica 53(53):346–354

    Article  MathSciNet  MATH  Google Scholar 

  37. Li C, Chen L, Aihara K (2006) Synchronization of coupled nonidentical genetic oscillators. Phys Biol 3(1):37

    Article  Google Scholar 

  38. Wu X, Tang Y, Cao J (2019) Input-to-State stability of time-varying switched systems with time delays. IEEE Trans Automat Control 64(6):2537–2544

    Article  MathSciNet  MATH  Google Scholar 

  39. Pan L, Cao J (2012) Stochastic quasi-synchronization for delayed dynamical networks via intermittent control. Commun Nonlinear Sci 17(3):1332–1343

    Article  MathSciNet  MATH  Google Scholar 

  40. Zhang W, Tang Y, Miao Q, Du W (2013) Exponential synchronization of coupled switched neural networks with mode-dependent impulsive effects. IEEE Trans Neural Netw 24(8):1316–1326

    Article  Google Scholar 

  41. Alwan M, Liu X, Xie W (2010) Existence, continuation, and uniqueness problems of stochastic impulsive systems with time delay. J Franklin I(347):1317–1333

    Article  MathSciNet  MATH  Google Scholar 

  42. Wang Y, Cao J, Hu J (2015) Stochastic synchronization of coupled delayed neural networks with switching topologies via single pinning impulsive control. Neural Comput Appl 26(7):1739–1749

    Article  Google Scholar 

  43. Tang Y, Xing X, Karimi HR, Kocarev L, Jürgen K (2016) Tracking control of networked multi-agent systems under new characterizations of impulses and its applications in robotic systems. IEEE Trans Ind Electron 63(2):1299–1307

    Article  Google Scholar 

  44. Zhao Y, Fu F, Wang J, Feng J, Zhang H (2018) Synchronization of hybrid-coupled delayed dynamical networks with noises by partial mixed impulsive control strategy. Phys A 492:1181–1193

    Article  MathSciNet  Google Scholar 

  45. Yi C, Feng J, Wang J, Xu C, Zhao Y (2017) Synchronization of delayed neural networks with hybrid coupling via partial mixed pinning impulsive control. Appl Math Comput 312:78–90

    MathSciNet  MATH  Google Scholar 

  46. Li Y (2017) Impulsive synchronization of stochastic neural networks via controlling partial states. Neural Process Lett 46(1):59–69

    Article  Google Scholar 

  47. Zhang G, Liu Z, Ma Z (2007) Synchronization of complex dynamical networks via impulsive control. Chaos 17(4):043126

    Article  MathSciNet  MATH  Google Scholar 

  48. Li F, Sun J (2010) Asymptotic stability of a genetic network under impulsive control. Phys Lett A 374(31–32):3177–3184

    Article  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to express their sincere gratitude to Fuyan Hu for helpful mathematics discussion, and also thank all reviewers and editors for their professional comments and valuable suggestions, which helped to improve the paper significantly.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming-Feng Ge.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was partially supported by the National Natural Science Foundation of China under Grants 61503282 and 62073301, the Natural Science Foundation of Hubei Province of China under Grant 2019CFB559, the Fundamental Research Funds for the Central Universities (WUT: 2019IB012, 2020IB003).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ling, G., Ge, MF., Tong, YH. et al. Exponential Synchronization of Delayed Switching Genetic Oscillator Networks via Mode-Dependent Partial Impulsive Control. Neural Process Lett 53, 1845–1863 (2021). https://doi.org/10.1007/s11063-021-10488-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11063-021-10488-9

Keywords

Navigation