Skip to main content
Log in

Prescribed-Time Synchronization of Coupled Memristive Neural Networks with Heterogeneous Impulsive Effects

  • Published:
Neural Processing Letters Aims and scope Submit manuscript

Abstract

This paper is concerned with the prescribed-time synchronization of coupled memristive neural networks (MNNs). The impulsive effects with heterogeneous impulsive instants and impulsive strengths are considered. Different from related results on the fixed-time synchronization, this paper focuses on the prescribed-time synchronization of coupled MNNs, in which the settling time can be prescribed according to task requirements. A sufficient criterion is derived to ensure the prescribed-time synchronization of coupled MNNs. Besides, the proposed design method provides less conservatism compared with the existing results. A numerical example and an application in secure communication are provided to show the effectiveness of the theoretical results

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Liu H, Wang Z, Shen B, Huang T, Fuad AE (2018) Stability analysis for discrete-time stochastic memristive neural networks with both leakage and probabilistic delays. Neural Netw 102:1–9

    Article  Google Scholar 

  2. Zhang G, Zeng Z (2018) Exponential stability for a class of memristive neural networks with mixed time-varying delays. Appl Math Comput 321:544–554

    MathSciNet  MATH  Google Scholar 

  3. Zhu S, Ye E, Liu D, Zhou S (2018) New algebraic criteria for global exponential periodicity and stability of memristive neural networks with variable delays. Neural Process Lett 48:1749–1766

    Article  Google Scholar 

  4. Gong S, Yang S, Guo Z, Huang T (2019) Global exponential synchronization of memristive competitive neural networks with time-varying delay via nonlinear control. Neural Process Lett 49:103–119

    Article  Google Scholar 

  5. Ren S, Zhao Y, Xia Y (2020) Anti-synchronization of a class of fuzzy memristive competitive neural networks with different time scales. Neural Process Lett. https://doi.org/10.1007/s11063-020-10269-w

    Article  Google Scholar 

  6. Zhang Y, Bao Y (2020) Event-triggered hybrid impulsive control for synchronization of memristive neural networks. Sci China Inf Sci 63:150206

    Article  MathSciNet  Google Scholar 

  7. Ding S, Wang Z, Huang Z, Zhang H (2017) Novel switching jumps dependent exponential synchronization criteria for memristor-based neural networks. Neural Process Lett 45:15–28

    Article  Google Scholar 

  8. Li R, Gao X, Cao J (2019) Quasi-state estimation and quasi-synchronization control of quaternion-valued fractional-order fuzzy memristive neural networks: vector ordering approach. Appl Math Comput 362:124572

    MathSciNet  MATH  Google Scholar 

  9. We F, Chen G, Wang W (2020) Finite-time synchronization of memristor neural networks via interval matrix method. Neural Netw 127:7–18

    Article  Google Scholar 

  10. Zhang Y, Li L, Peng H, Xiao J, Yang Y, Zheng M, Zhao H (2018) Finite-time synchronization for memristor-based BAM neural networks with stochastic perturbations and time-varying delays. Int J Robust Nonlinear Control 28:5118–5139

    Article  MathSciNet  Google Scholar 

  11. Zhang Y, Li L, Peng H, Xiao J, Yang Y, Zheng M, Zhao H (2020) Finite-time synchronization of memristive neural networks with fractional-order. IEEE Trans Syst Man Cybern Syst. https://doi.org/10.1109/TSMC.2019.2931046

    Article  Google Scholar 

  12. Polyakov A (2012) Nonlinear feedback design for fixed-time stabilization of linear control systems. IEEE Trans Autom Control 57(8):2106–2110

    Article  MathSciNet  Google Scholar 

  13. Li R, Cao J, Alsaedi A, Alsaadi F (2017) Exponential and fixed-time synchronization of Cohen–Grossberg neural networks with time-varying delays and reaction–diffusion terms. Appl Math Comput 313:37–51

    Article  MathSciNet  Google Scholar 

  14. Khanzadeh A, Pourgholi M (2018) Fixed-time leader–follower consensus tracking of second-order multi-agent systems with bounded input uncertainties using non-singular terminal sliding mode technique. IET Control Theory Appl 12(5):679–686

    Article  MathSciNet  Google Scholar 

  15. Li P, Song Z, Wang Z, Liu W (2020) Fixed-time consensus for disturbed multiple Euler–Lagrange systems with connectivity preservation and quantized input. Appl Math Comput 380:125303

    Article  MathSciNet  Google Scholar 

  16. Lü H, He W, Han Q-L, Peng C (2018) Fixed-time synchronization for coupled delayed neural networks with discontinuous or continuous activations. Neurocomputing 314:143–153

    Article  Google Scholar 

  17. Zheng M, Li L, Peng H, Xiao J, Yang Y, Zhang Y, Zhao H (2018) Fixed-time synchronization of memristor-based fuzzy cellular neural network with time-varying delay. J Frankl Inst 355:6780–6809

    Article  MathSciNet  Google Scholar 

  18. Wei R, Cao J (2019) Fixed-time synchronization of quaternion-valued memristive neural networks with time delays. Neural Netw 113:1–10

    Article  Google Scholar 

  19. Wei R, Cao J, Abdel-Aty M (2020) Fixed-time synchronization of second-order MNNs in quaternion field. IEEE Trans Syst Man Cybern Syst. https://doi.org/10.1109/TSMC.2019.2931091

    Article  Google Scholar 

  20. Li R, Cao J (2018) Finite-time and fixed-time stabilization control of delayed memristive neural networks: robust analysis technique. Neural Process Lett 47:1077–1096

    Article  Google Scholar 

  21. Zhang Y, Zhuang J, Xia Y, Bai Y, Cao J, Gu L (2019) Fixed-time synchronization of the impulsive memristor-based neural networks. Commun Nonlinear Sci Numer Simul 77:40–53

    Article  MathSciNet  Google Scholar 

  22. Wang G, Shen Y (2014) Exponential synchronization of coupled memristive neural networks with time delays. Neural Comput Appl 24:1421–1430

    Article  Google Scholar 

  23. Li J, Jiang H, Hu C, Alsaedi A (2019) Finite/fixed-time synchronization control of coupled memristive neural networks. J Frankl Inst 356(16):9928–9952

    Article  MathSciNet  Google Scholar 

  24. Yang C, Huang L, Cai Z (2019) Fixed-time synchronization of coupled memristor-based neural networks with time-varying delays. Neural Netw 116:101–109

    Article  Google Scholar 

  25. Gong S, Guo Z, Wen S, Huang T (2020) Finite-time and fixed-time synchronization of coupled memristive neural networks with time delay. IEEE Trans Cybern. https://doi.org/10.1109/TCYB.2019.2953236

    Article  Google Scholar 

  26. Zhang W, Tang Y, Wu J, Xiaotai F (2014) Synchronization of nonlinear dynamical networks with heterogeneous impulses. IEEE Trans Circuits Syst I Regul Pap 61(4):1220–1228

    Article  Google Scholar 

  27. Zhang H, Zhang W, Miao Q, Cui Y (2019) Synchronization of switched coupled neural networks with distributed impulsive effects: an impulsive strength dependent approach. Neural Process Lett 50:515–529

    Article  Google Scholar 

  28. Rakkiyappan R, Gayathri D, Velmurugan G, Cao J (2019) Exponential synchronization of inertial memristor-based neural networks with time delay using average impulsive interval approach. Neural Process Lett 50:2053–2071

    Article  Google Scholar 

  29. Li L, Mu G (2019) Synchronization of coupled complex-valued impulsive neural networks with time delays. Neural Process Lett 50:2515–2527

    Article  Google Scholar 

  30. Zhuang J, Zhou Y, Xia Y (2020) Intra-layer synchronization in duplex networks with time-varying delays and stochastic perturbations under impulsive control. Neural Process Lett. https://doi.org/10.1007/s11063-020-10281-0

    Article  Google Scholar 

  31. Li Y (2017) Impulsive synchronization of stochastic neural networks via controlling partial states. Neural Process Lett 49:59–69

    Article  Google Scholar 

  32. Li Y, Lou J, Wang Z, Alsaadi FE (2018) Synchronization of dynamical networks with nonlinearly coupling function under hybrid pinning impulsive controllers. J Frankl Inst 355:6520–6530

    Article  MathSciNet  Google Scholar 

  33. Ji X, Lu J, Jianquan L, Qiu J, Kaibo S (2020) A unified criterion for global exponential stability of quaternion-valued neural networks with hybrid impulses. Int J Robust Nonlinear Control 30:8098–8116

    Article  MathSciNet  Google Scholar 

  34. Yang X, Lam J, Ho DWC, Feng Z (2017) Fixed-time synchronization of complex networks with impulsive effects via nonchattering control. IEEE Trans Autom Control 62(11):5511–5521

    Article  MathSciNet  Google Scholar 

  35. Li N, Wu Q, Xiaoqun Y (2020) Fixed-time synchronization of complex dynamical network with impulsive effects. IEEE Access 8:33072–33079

    Article  Google Scholar 

  36. Li H, Li C, Huang T, Zhang W (2018) Fixed-time stabilization of impulsive Cohen–Grossberg BAM neural networks. Neural Netw 98:203–211

    Article  Google Scholar 

  37. Jingting H, Sui G, Lv X, Li X (2018) Fixed-time control of delayed neural networks with impulsive perturbations. Nonlinear Anal Model Control 23(6):904–920

    Article  MathSciNet  Google Scholar 

  38. Hu J, Sui G (2020) Fixed-time control of static impulsive neural networks with infinite distributed delay and uncertainty. Commun Nonlinear Sci Num Simul. https://doi.org/10.1016/j.cnsns.2019.05.006

    Article  MATH  Google Scholar 

  39. Wang Y, Song Y, Hill DJ, Krstic M (2019) Prescribed-time consensus and containment control of networked multiagent systems. IEEE Trans Cybern 49(4):1138–1147

    Article  Google Scholar 

  40. Liu X, Ho DWC, Xie C (2020) Prespecified-time cluster synchronization of complex networks via a smooth control approach. IEEE Trans Cybern 50(4):1771–1775

    Article  Google Scholar 

  41. Wen S, Bao G, Zeng Z, Chen Y, Huang T (2013) Global exponential synchronization of memristor-based recurrent neural networks with time-varying delays. Neural Netw 48:195–203

    Article  Google Scholar 

  42. Filippov AF (1960) Differential equations with discontinuous righthand sides. Mate Sb 93(1):99–128

    Google Scholar 

  43. Liu Y, Xu J, Pei L, Liang J (2016) Global stability of Clifford-valued recurrent neural networks with time delays. Nonlinear Dyn 84:767–777

    Article  MathSciNet  Google Scholar 

  44. Liu Y, Zheng Y, Lu J, Cao J, Rutkowski L (2020) Constrained quaternion-variable convex optimization: a quaternion-valued recurrent neural network approach. IEEE Trans Neural Netw Learn Syst 31(3):1022–1035

    Article  MathSciNet  Google Scholar 

  45. Zhang W, Zuo Z, Wang Y, Zhang Z (2020) Double-integrator dynamics for multiagent systems with antagonistic reciprocity. IEEE Trans Cybern 50(9):4110–4120

    Article  Google Scholar 

  46. Zhang Y, Liu Y, Yang X, Qiu J (2020) Velocity constraint on double-integrator dynamics subject to antagonistic information. IEEE Trans Circ Syst II Express Briefs. https://doi.org/10.1109/TCSII.2020.2999375

    Article  Google Scholar 

  47. Zhou Y, Zeng Z (2019) Event-triggered impulsive control on quasi-synchronization of memristive neural networks with time-varying delays. Neural Netw 110:55–65

    Article  Google Scholar 

  48. He W, Luo T, Tang Y, Du Y-C, Wenli T, Qian F (2020) Secure communication based on quantized synchronization of chaotic neural networks under an event-triggered strategy. IEEE Trans Neural Netw Learn Syst. https://doi.org/10.1109/TNNLS.2019.2943548

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work is supported in part by National Natural Science Foundation of China under Grants Numbers 61973166, 61922044 and 61973167.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yijun Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bao, Y., Zhang, Y., Zhang, B. et al. Prescribed-Time Synchronization of Coupled Memristive Neural Networks with Heterogeneous Impulsive Effects. Neural Process Lett 53, 1615–1632 (2021). https://doi.org/10.1007/s11063-021-10469-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11063-021-10469-y

Keywords

Navigation