Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Memristor Crossbar Array Based ACO For Image Edge Detection

  • 29 Accesses

Abstract

Memristor provides an available way to design and deploy swarm intelligence. As a typical swarm intelligence algorithm, ant colony optimization is implemented by the memristor crossbar array to make image edge detection in this paper. Firstly, a non-linear voltage-controlled memristor model with a relaxation term is proposed. Then, an improved ant colony optimization with padding strategy is designed. Thirdly, a memristor crossbar array with external control circuits is designed to implement ant colony optimization for image edge detection, which offers high device density and parallel computing. In the course of ant colony optimization based image edge detection deployed by memristor crossbar array, the threshold to generating edges can be directly chosen as the mean of the final conductance matrix. On the one hand, experiment results show that more delicate edges can be detected by proposed method compared to holistically-nested edge detection based on neural networks. On the other hand, Figure of merit of proposed method is better than that of Sobel operator.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

References

  1. 1.

    Pereira F, Tavares J (2009) Bio-inspired algorithms for the vehicle routing problem. Springer, Berlin

  2. 2.

    Das TK, Venayagamoorthy GK, Aliyu UO (2008) Bio-inspired algorithms for the design of multiple optimal power system stabilizers: SPPSO and BFA. IEEE Trans Ind Appl 44(5):1445–1457

  3. 3.

    Dorigo M, Blum C (2005) Ant colony optimization theory: a survey. Theor Comput Sci 344:243–278

  4. 4.

    Tian J, Yu W, Xie S (2008) An ant colony optimization algorithm for image edge detection. In: 2008 IEEE congress on evolutionary computation (IEEE world congress on computational intelligence), Hong Kong, pp 751–756. https://doi.org/10.1109/CEC.2008.4630880

  5. 5.

    Baterina A, Oppus C (2010) Image edge detection using ant colony optimization. WSEAS Trans Signal Process 6:58–67

  6. 6.

    Tian J, Weiyu Y, Chen L, Ma L (2011) Image edge detection using variation-adaptive ant colony optimization. Trans Comput Collective Intell 5:27–40

  7. 7.

    Chua L (1971) Memristor-the missing circuit element. IEEE Trans Circuit Theory 18(5):507–519

  8. 8.

    Chua LO (2012) The fourth element. Proceedings IEEE 100(6):1920–1927

  9. 9.

    Chua LO (2018) How we predicted the memristor. Nat Electron 1(5):322–322

  10. 10.

    Zidan MA, Strachan JP, Lu WD (2018) The future of electronics based on memristive systems. Nat Electron 1(1):22–29

  11. 11.

    Lee J, Wei L (2017) On-demand reconfiguration of nanomaterials: when electronics meets ionics. Adv Mater 30:1702770

  12. 12.

    Kim K-H, Jo S, Gaba S, Wei L (2010) Nanoscale resistive memory with intrinsic diode characteristics and long endurance. Appl Phys Lett 96:053106–053106

  13. 13.

    Govoreanu B, Kar G, Chen YY, Paraschiv V, Kubicek S, Fantini A, Radu I, Goux L, Clima S, Degraeve R, Jossart N, Richard O (2011) \(10\times 10~\text{nm}^{2}\) hf/hfox crossbar resistive ram with excellent performance, reliability and low-energy operation. In: 2011 IEEE international electron devices meeting (IEDM)

  14. 14.

    Torrezan A, Strachan JW, Medeiros-Ribeiro G, Williams S (2011) Sub-nanosecond switching of a tantalum oxide memristor. Nanotechnology 22:485203

  15. 15.

    Choi BJ, Torrezan A, Strachan JW, Kotula P, Lohn A, Marinella M, Li Z, Williams S, Yang JJ (2016) High-speed and low-energy nitride memristors. Adv Funct Mater 26(29):5290–5296

  16. 16.

    Yang JJ, Strukov D, Stewart D (2013) Memristive devices for computing. Nat Nanotechnol 8:13–24

  17. 17.

    Zhou J, Cai F, Wang Q, Chen B, Gaba S, Wei L (2016) Very low programming-current RRAM with self-rectifying characteristics. IEEE Electron Device Lett 37:1–1

  18. 18.

    Xia Q, Yang JJ, Wei W, Li X, Williams S (2010) Self-aligned memristor cross-point arrays fabricated with one nanoimprint lithography step. Nano Lett 10:2909–14

  19. 19.

    Zidan MA, Omran H, Naous R, Sultan A, Fahmy HAH, Lu WD, Salama KN (2016) Single-readout high-density memristor crossbar. Sci Rep 6(1):18863

  20. 20.

    Milo V et al (2016) Demonstration of hybrid CMOS/RRAM neural networks with spike time/rate-dependent plasticity. In: 2016 IEEE international electron devices meeting (IEDM), San Francisco, CA, pp 16.8.1–16.8.4. https://doi.org/10.1109/IEDM.2016.7838435

  21. 21.

    Alibart F, Zamanidoost E, Strukov DB (2013) Pattern classification by memristive crossbar circuits using ex situ and in situ training. Nat Commun 4(1):2072

  22. 22.

    Prezioso M, Merrikh-Bayat F, Hoskins B, Adam G, Likharev K, Strukov D (2014) Training and operation of an integrated neuromorphic network based on metal-oxide memristors. Nature 521:61

  23. 23.

    Sheridan P, Cai F, Chao D, Ma W, Zhang Z, Wei L (2017) Sparse coding with memristor networks. Nat Nanotechnol 12:784

  24. 24.

    Choi S, Shin J, Lee J, Sheridan P, Wei L (2017) Experimental demonstration of feature extraction and dimensionality reduction using memristor networks. Nano Lett 17:3113–3118

  25. 25.

    Pershin Y, Di Ventra M (2016) Memcomputing implementation of ant colony optimization. Neural Process Lett 44:265–277

  26. 26.

    Pajouhi Z, Roy K (2018) Image edge detection based on swarm intelligence using memristive networks. IEEE Trans Comput Aided Des Integr Circuits Syst 37(9):1774–1787 09

  27. 27.

    Yu J, Tan M, Zhang H, Tao D, Rui Y (2019) Hierarchical deep click feature prediction for fine-grained image recognition. IEEE Trans Pattern Anal Mach Intell. https://doi.org/10.1109/TPAMI.2019.2932058

  28. 28.

    Keysers D, Deselaers T, Gollan C, Ney H (2007) Deformation models for image recognition. IEEE Trans Pattern Anal Mach Intell 29(8):1422–1435 08

  29. 29.

    Yu J, Zhu C, Zhang J, Huang Q, Tao D (2019) Spatial pyramid-enhanced NetVLAD with weighted triplet loss for place recognition. IEEE Trans Neural Netw Learn Syst. https://doi.org/10.1109/TNNLS.2019.2908982

  30. 30.

    Redmon J, Divvala S, Girshick R, Farhadi A (2016) You only look once: unified, real-time object detection. In: 2016 IEEE conference on computer vision and pattern recognition (CVPR), pp 779–788

  31. 31.

    Liu W et al (2016) SSD: single shot multiBox detector. In: Leibe B, Matas J, Sebe N, Welling M (eds) Computer vision - ECCV 2016. ECCV 2016. Lecture notes in computer science, vol 9905. Springer, Cham. https://doi.org/10.1007/978-3-319-46448-0_2

  32. 32.

    Hong C, Yu J (2017) Multi-modal face pose estimation with multi-task manifold deep learning. arXiv:abs/1712.06467

  33. 33.

    Hong C, Yu J, Wan J, Tao D, Wang M (2015) Multimodal deep autoencoder for human pose recovery. IEEE Trans Image Process 24(12):5659–5670

  34. 34.

    Yu J, Zhang B, Kuang Z, Lin D, Fan J (2017) iprivacy: image privacy protection by identifying sensitive objects via deep multi-task learning. IEEE Trans Inf Forensics Secur 12(5):1005–1016 05

  35. 35.

    Yu J, Tao D, Wang M, Rui Y (2015) Learning to rank using user clicks and visual features for image retrieval. IEEE Trans Cybern 45(4):767–779

  36. 36.

    Zhang J, Jun Y, Tao D (2018) Local deep-feature alignment for unsupervised dimension reduction. IEEE Trans Image Process 27:1

  37. 37.

    Ding L, Goshtasby A (2000) On the canny edge detector. Pattern Recognit 34:721–725

  38. 38.

    Gao W, Zhang X, Yang L, Liu H (2010) An improved sobel edge detection 5:67–71

  39. 39.

    Xie S, Tu Z (2017) Holistically-nested edge detection. Int J Comput Vis 125(1):3–18

  40. 40.

    Pande S, Bhadouria V, Ghoshal D (2012) A study on edge marking scheme of various standard edge detectors. Int J Comput Appl 44:33–37

Download references

Acknowledgements

This work are supported by Research Fund for International Young Scientists of National Natural Science Foundation of China (NSFC Grant No. 61550110248), Sichuan Science and Technology Program (Grant No. 2019YFG0190) and Research on Sino-Tibetan multi-source information acquisition, fusion, data mining and its application (Grant No. H04W170186).

Author information

Correspondence to Yongbin Yu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yu, Y., Deng, Q., Ren, L. et al. Memristor Crossbar Array Based ACO For Image Edge Detection. Neural Process Lett (2020). https://doi.org/10.1007/s11063-019-10179-6

Download citation

Keywords

  • Memristor
  • Ant colony optimization
  • Image edge detection
  • Crossbar array