Adaptive State Estimation of Stochastic Delayed Neural Networks with Fractional Brownian Motion


This paper considers the adaptive state estimation problem for stochastic neural networks with fractional Brownian motion (FBM). The problem for the stochastic neural networks with FBM is handled according to the theory of Hilbert–Schmidt and the principle of analytic semigroup. Using the stochastic analytic technique and adaptive control method, the asymptotic stability and the exponential stability criteria are established. Finally, a simulation example is given to prove the efficiency of developed criteria.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4


  1. 1.

    Biagini F, Hu Y, Øksendal B, Zhang T (2008) Stochastic calculus for fractional Brownian motion and applications. Springer, Berlin

    Google Scholar 

  2. 2.

    Caraballo T, Garrido-Atienza MJ, Taniguchi T (2011) The existence and exponential behavior of solutions to stochastic delay evolution equations with a fractional Brownian motion. Nonlinear Anal Theory Methods Appl 74(11):3671–3684

    MathSciNet  Article  Google Scholar 

  3. 3.

    Chen H, Shi P, Lim CC (2017) Exponential synchronization for Markovian stochastic coupled neural networks of neutral-type via adaptive feedback control. IEEE Trans Neural Netw Learn Syst 28(7):1618–1632

    MathSciNet  Article  Google Scholar 

  4. 4.

    Cheng P, Qi Y, Xin K, Chen J, Xie L (2016) Energy-efficient data forwarding for state estimation in multi-hop wireless sensor networks. IEEE Trans Autom Control 61(5):1322–1327

    MathSciNet  Article  Google Scholar 

  5. 5.

    Fauth A, Tudor CA (2014) Multifractal random walks with fractional Brownian motion via Malliavin calculus. IEEE Trans Inf Theory 60(3):1963–1975

    MathSciNet  Article  Google Scholar 

  6. 6.

    Gómez-Expósito A, Gómez-Quiles C, Džafić I (2015) State estimation in two time scales for smart distribution systems. IEEE Trans Smart Grid 6(1):421–430

    Article  Google Scholar 

  7. 7.

    Jumarie G (2008) Modeling fractional stochastic systems as non-random fractional dynamics driven by Brownian motions. Appl Math Model 32(5):836–859

    MathSciNet  Article  Google Scholar 

  8. 8.

    Lakshmanan S, Park JH, Ji DH, Jung HY, Nagamani G (2012) State estimation of neural networks with time-varying delays and Markovian jumping parameter based on passivity theory. Nonlinear Dyn 70(2):1421–1434

    MathSciNet  Article  Google Scholar 

  9. 9.

    Lee TH, Park JH, Jung H (2018) Network-based \(H_{\infty }\) state estimation for neural networks using imperfect measurement. Appl Math Comput 316:205–214

    Google Scholar 

  10. 10.

    Liu C, Gong Z, Teo KL (2018) Robust parameter estimation for nonlinear multistage time-delay systems with noisy measurement data. Appl Math Model 53:353–368

    MathSciNet  Article  Google Scholar 

  11. 11.

    Liu JL, Yu ZG, Anh V (2014) Topological properties and fractal analysis of a recurrence network constructed from fractional Brownian motions. Phys Rev E 89(3):032814

    Article  Google Scholar 

  12. 12.

    Luo Y, Song B, Liang J, Dobaie AM (2017) Finite-time state estimation for jumping recurrent neural networks with deficient transition probabilities and linear fractional uncertainties. Neurocomputing 260(10):265–274

    Article  Google Scholar 

  13. 13.

    Ma W, Zhang Q, Han C (2012) Numerical analysis for stochastic age-dependent population equations with fractional Brownian motion. Commun Nonlinear Sci Numer Simul 17(4):1884–1893

    MathSciNet  Article  Google Scholar 

  14. 14.

    Manley B, Niquidet K (2017) How does real option value compare with Faustmann value when log prices follow fractional Brownian motion? For Policy Econ 85:76–84

    Article  Google Scholar 

  15. 15.

    Mathieu JL, Koch S, Callaway DS (2013) State estimation and control of electric loads to manage real-time energy imbalance. IEEE Trans Power Syst 28(1):430–440

    Article  Google Scholar 

  16. 16.

    Mishura YS (2008) Stochastic calculus for fractional Brownian motion and related processes. Springer, Berlin

    Google Scholar 

  17. 17.

    Nadal E, Aguado JV, Abisset-Chavanne E, Chinesta F, Keunings R, Cueto E (2017) A physically-based fractional diffusion model for semi-dilute suspensions of rods in a Newtonian fluid. Appl Math Model 51:58–67

    MathSciNet  Article  Google Scholar 

  18. 18.

    Park M, Cushman JH, O’Malley D (2014) Fractional Brownian motion run with a multi-scaling clock mimics diffusion of spherical colloids in microstructural fluids. Langmuir 30(38):11263–11266

    Article  Google Scholar 

  19. 19.

    Rakkiyappan R, Cao J, Velmurugan G (2015) Existence and uniform stability analysis of fractional-order complex-valued neural networks with time delays. IEEE Trans Neural Netw Learn Syst 26(1):84–97

    MathSciNet  Article  Google Scholar 

  20. 20.

    Ramasamy S, Nagamani G, Gopalakrishnan P (2016) State estimation for discrete-time neural networks with two additive time-varying delay components based on passivity theory. Int J Pure Appl Math 106(6):131–141

    Google Scholar 

  21. 21.

    Shen H, Zhu Y, Zhang L, Park JH (2017) Extended dissipative state estimation for Markov jump neural networks with unreliable links. IEEE Trans Neural Netw Learn Syst 28(2):346–358

    MathSciNet  Article  Google Scholar 

  22. 22.

    Solmaz G, Akbaş M, Turgut D (2015) A mobility model of theme park visitors. IEEE Trans Mobile Comput 14(12):2406–2418

    Article  Google Scholar 

  23. 23.

    Tong D, Zhou W, Zhou X, Yang J, Zhang L, Xu Y (2015) Exponential synchronization for stochastic neural networks with multi-delayed and Markovian switching via adaptive feedback control. Commun Nonlinear Sci Numer Simul 29(1–3):359–371

    MathSciNet  Article  Google Scholar 

  24. 24.

    Tong D, Chen Q, Zhou W, Zhou J, Xu Y (2018) Multi-delay-dependent exponential synchronization for neutral-type stochastic complex networks with Markovian jump parameters via adaptive control. Neural Process Lett.

  25. 25.

    Tong D, Rao P, Chen Q, Ogorzalek MJ, Li X (2018) Exponential synchronization and phase locking of a multilayer Kuramoto-oscillator system with a pacemaker. Neurocomputing 308:129–137

    Article  Google Scholar 

  26. 26.

    Wang Z, Fang J, Liu X (2008) Global stability of stochastic high-order neural networks with discrete and distributed delays. Chaos Solitons Fract 36(2):388–396

    MathSciNet  Article  Google Scholar 

  27. 27.

    Xu Y, Zhou W, Lu H, Xie C, Tong D (2018) Adaptive finite-time synchronization of neutral type dynamical network with double derivative coupling. Neural Process Lett 48(2):1175–1186

    Article  Google Scholar 

  28. 28.

    Zachevsky I, Zeevi YY (2014) Single-image superresolution of natural stochastic textures based on fractional Brownian motion. IEEE Trans Image Process 23(5):2096–2108

    MathSciNet  Article  Google Scholar 

  29. 29.

    Zhang W, Tang Y, Wong WK, Miao Q (2015) Stochastic stability of delayed neural networks with local impulsive effects. IEEE Trans Neural Netw Learn Syst 26(10):2336–2345

    MathSciNet  Article  Google Scholar 

  30. 30.

    Zhao Y, Weng T, Ye S (2014) Geometrical invariability of transformation between a time series and a complex network. Phys Rev E 90(1):012804

    Article  Google Scholar 

  31. 31.

    Zhou W, Tong D, Gao Y, Ji C, Su H (2012) Mode and delay-dependent adaptive exponential synchronization in \(p\)th moment for stochastic delayed neural networks with Markovian switching. IEEE Trans Neural Netw Learn Syst 23(4):662–668

    Google Scholar 

  32. 32.

    Zhou W, Zhu Q, Shi P, Su H, Fang J, Zhou L (2014) Adaptive synchronization for neutral-type neural networks with stochastic perturbation and Markovian switching parameters. IEEE Trans Cybern 44(12):2848–2860

    Article  Google Scholar 

  33. 33.

    Zhou W, Zhou X, Yang J, Zhou J, Tong D (2018) Stability analysis and application for delayed neural networks driven by fractional Brownian noise. IEEE Trans Neural Netw Learn Syst 29(5):1491–1502

    MathSciNet  Article  Google Scholar 

  34. 34.

    Zhou X, Yang J, Li Z, Tong D (2018) \(p\)th moment synchronization of Markov switched neural networks driven by fractional Brownian noise. Neural Comput Appl 29(10):1–14

    Google Scholar 

  35. 35.

    Zhu Q, Cao J, Hayat T, Alsaadi F (2015) Robust stability of Markovian jump stochastic neural networks with time delays in the leakage terms. Neural Process Lett 41(1):1–27

    Article  Google Scholar 

  36. 36.

    Zhu S, Shen Y, Liu L (2010) Exponential stability of uncertain stochastic neural networks with Markovian switching. Neural Process Lett 32(3):293–309

    Article  Google Scholar 

Download references

Author information



Corresponding authors

Correspondence to Dongbing Tong or Qiaoyu Chen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work is partially supported by the National Natural Science Foundation of China (61673257; 11501367; 61573095; 61673221); the Natural Science Foundation of Jiangsu Province (BK20181418); the fifteenth batch of Six Talent Peaks project in Jiangsu Province (DZXX-019).

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yan, X., Tong, D., Chen, Q. et al. Adaptive State Estimation of Stochastic Delayed Neural Networks with Fractional Brownian Motion. Neural Process Lett 50, 2007–2020 (2019).

Download citation


  • State estimation
  • Neural networks
  • Fractional Brownian motion (FBM)
  • Asymptotic stability
  • Exponential stability