Skip to main content
Log in

Time Series, Spectral Densities and Robust Functional Clustering

  • Published:
Neural Processing Letters Aims and scope Submit manuscript

Abstract

In this work, a robust clustering algorithm for stationary time series is proposed. The algorithm is based on the use of estimated spectral densities, which are considered as functional data, as the basic characteristic of stationary time series for clustering purposes. A robust algorithm for functional data is then applied to the set of spectral densities. Trimming techniques and restrictions on the scatter within groups reduce the effect of noise in the data and help to prevent the identification of spurious clusters. The procedure is tested in a simulation study and is also applied to a real data set.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Aghabozorgi S, Shirkhorshidi AS, Wah TY (2015) Time-series clustering: a decade review. Inf Syst 53:16–38

    Google Scholar 

  2. Alvarez-Esteban PC, Euán C, Ortega J (2016) Statistical analysis of stationary intervals for random waves. Proc Int Offshore Polar Eng Conf 3:305–311

    Google Scholar 

  3. Alvarez-Esteban PC, Euán C, Ortega J (2016) Time series clustering using the total variation distance with applications in oceanography. Environmetrics 27(6):355–369

    MathSciNet  Google Scholar 

  4. Bagnall AJ, Janacek GJ (2004) Clustering time series from ARMA models with clipped data. In: Proceedings of the tenth ACM SIGKDD international conference on knowledge discovery and data mining, KDD ’04. ACM, New York, pp 49–58

  5. Bahadori MT, Kale DC, Fan Y, Liu Y (2015) Functional subspace clustering with application to time series. In: Proceedings of the 32nd international conference on machine learning, pp 228–237

  6. Bouveyron C, Jacques J (2011) Model-based clustering of time series in group-specific functional subspaces. Adv Data Anal Classif 5(4):281–300

    MathSciNet  MATH  Google Scholar 

  7. Caiado J, Crato N, Peña D (2006) A periodogram-based metric for time series classification. Comput Stat Data Anal 50(10):2668–2684

    MathSciNet  MATH  Google Scholar 

  8. Caiado J, Crato N, Peña D (2009) Comparison of times series with unequal length in the frequency domain. Commun Stat Simul Comput 38(3):527–540

    MathSciNet  MATH  Google Scholar 

  9. Caiado J, Maharaj EA, D’Urso P (2015) Time Series Clustering, Chapter 12. CRC Handbooks of Modern Statistical Methods. Chapman & Hall, London, pp 241–263

    Google Scholar 

  10. Cerioli A, García-Escudero LA, Mayo-Iscar A, Riani M (2017) Finding the number of normal groups in model-based clustering via constrained likelihoods. J Comput Graph Stat 27:404

    MathSciNet  Google Scholar 

  11. Chao G, Sun S, Bi J (2017) A survey on multi-view clustering. arXiv preprint arXiv:1712.06246

  12. Corduas M, Piccolo D (2008) Time series clustering and classification by the autoregressive metric. Comput Stat Data Anal 52:1860–1872

    MathSciNet  MATH  Google Scholar 

  13. Cuesta-Albertos JA, Fraiman R (2007) Impartial trimmed \(k\)-means for functional data. Comput Stat Data Anal 51(10):4864–4877

    MathSciNet  MATH  Google Scholar 

  14. Delaigle A, Hall P (2010) Defining probability density for a distribution of random functions. Ann Stat 38(2):1171–1193

    MathSciNet  MATH  Google Scholar 

  15. D’Urso P, De Giovanni L, Massari R (2015) Time series clustering by a robust autoregressive metric with application to air pollution. Chemom Intell Lab Syst 141:107–124

    Google Scholar 

  16. D’Urso P, De Giovanni L, Massari R (2016) Garch-based robust clustering of time series. Fuzzy Sets Syst 305:1–28 (Theme: Classification, Recognition and Clustering)

    MathSciNet  MATH  Google Scholar 

  17. Euán C, Ombao H, Ortega J (2018) The hierarchical spectral merger algorithm: a new time series clustering procedure. J Classif 35:71–99. https://doi.org/10.1007/s00357-018-9250-5

    Article  MathSciNet  MATH  Google Scholar 

  18. Ferraty F, Vieu P (2006) Nonparametric functional data analysis. Springer series in statistics. Springer, New York

    MATH  Google Scholar 

  19. Fritz H, García-Escudero LA, Mayo-Iscar A (2013) A fast algorithm for robust constrained clustering. Comput Stat Data Anal 61:124–136

    MathSciNet  MATH  Google Scholar 

  20. Fu T (2011) A review on time series data mining. Eng Appl Artif Intell 24:164–181

    Google Scholar 

  21. García-Escudero LA, Gordaliza A (1999) Robustness properties of \(k\) means and trimmed \(k\) means. J Am Stat Assoc 94(447):956–969

    MathSciNet  MATH  Google Scholar 

  22. García-Escudero LA, Gordaliza A (2005) A proposal for robust curve clustering. J Classif 22(2):185–201

    MathSciNet  MATH  Google Scholar 

  23. García-Escudero LA, Gordaliza A, Matrán C, Mayo-Iscar A (2011) Exploring the number of groups in robust model-based clustering. Stat Comput 21(4):585–599

    MathSciNet  MATH  Google Scholar 

  24. García-Escudero LA, Gordaliza A, Mayo-Iscar A (2014) A constrained robust proposal for mixture modeling avoiding spurious solutions. Adv Data Anal Classif 8(1):27–43

    MathSciNet  MATH  Google Scholar 

  25. García-Escudero LA, Gordaliza A, Matrán C, Mayo-Iscar A (2015) Avoiding spurious local maximizers in mixture modeling. Stat Comput 25(3):619–633

    MathSciNet  MATH  Google Scholar 

  26. Goldberger AL, Amaral LAN, Glass L, Hausdorff JM, Ch Ivanov P, Mark RG, Mietus JE, Moody GB, Peng CK, Stanley HE (2000) PhysioBank, PhysioToolkit, and PhysioNet: somponents of a new research resource for complex physiologic signals. Circulation 101(23):e215–e220. https://doi.org/10.1161/01.CIR.101.23.e215

    Article  Google Scholar 

  27. Huang D, Wang CD, Lai JH (2018) Locally weighted ensemble clustering. IEEE Trans Cybernet 48(5):1460–1473

    Google Scholar 

  28. Julien J, Cristian P (2013) Funclust: a curves clustering method using functional random variables density approximation. Neurocomputing 112:164–171

    Google Scholar 

  29. James GM, Sugar CA (2003) Clustering for sparsely sampled functional data. J Am Stat Assoc 98(462):397–408

    MathSciNet  MATH  Google Scholar 

  30. Kalpakis K, Gada D, Puttagunta V (2001) Distance measures for effective clustering of ARIMA time-series. In: Proceedings 2001 IEEE international conference on data mining, pp 273–280

  31. Liao TW (2005) Clustering of time series data: a survey. Pattern Recognit 38:1857–1874

    MATH  Google Scholar 

  32. Maharaj EA, D’Urso P (2011) Fuzzy clustering of time series in the frequency domain. Inf Sci 181(7):1187–1211

    MATH  Google Scholar 

  33. Montero P, Vilar J (2014) TSclust: an R package for time series clustering. J Stat Softw 62:1–43

    Google Scholar 

  34. Preuss P, Vetter M, Dette H (2013) Testing semiparametric hypotheses in locally stationary processes. Scand J Stat 40(3):417–437

    MathSciNet  MATH  Google Scholar 

  35. Ramsay JO, Silverman BW (2005) Functional data analysis. Springer series in statistics, 2nd edn. Springer, New York

    Google Scholar 

  36. Rivera-García D, García-Escudero LA, Mayo-Iscar A, Ortega J (2018) Robust clustering for functional data based on trimming and constraints. Adv Data Anal Classif. https://doi.org/10.1007/s11634-018-0312-7

    Article  MATH  Google Scholar 

  37. Rivera-García D, García-Escudero LA, Mayo-Iscar A, Ortega J (2017) Robust clustering for time series using spectral densities and functional data analysis. In: International work-conference on artificial neural networks, LNCS 10306. Springer, pp 142–153

  38. Rousseeuw PJ, Van Driessen K (1999) A fast algorithm for the minimum covariance determinant estimator. Technometrics 41:212–223

    Google Scholar 

  39. Shumway RH, Stoffer DS (2010) Time series analysis and its applications: with R examples, 3rd edn. Springer, Berlin

    MATH  Google Scholar 

  40. Soueidatt M (2014) Funclustering: a package for functional data clustering. R package version 1.0.1

  41. Vidal R (2011) Subspace clustering. IEEE Signal Process Mag 28(2):52–68

    Google Scholar 

  42. Wu EHC, Yu PLH (2006) Iclus: a robust and scalable clustering model for time series via independent component analysis. Int J Syst Sci 37(13):987–1001

    MATH  Google Scholar 

Download references

Acknowledgements

Research by DRG and JO was partially supported by Conacyt, Mexico Project 169175 Análisis Estadístico de Olas Marinas, Fase II, Research by LA G-E and A M-I was partially supported by the Spanish Ministerio de Economía y Competitividad, grant MTM2017-86061-C2-1-P, and by Consejería de Educación de la Junta de Castilla y León and FEDER, Grants VA005P17 and VA002G18.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Ortega.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rivera-García, D., García-Escudero, L.A., Mayo-Iscar, A. et al. Time Series, Spectral Densities and Robust Functional Clustering. Neural Process Lett 52, 135–152 (2020). https://doi.org/10.1007/s11063-018-9926-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11063-018-9926-1

Keywords

Navigation