Skip to main content
Log in

Calibrated Multi-label Classification with Label Correlations

  • Published:
Neural Processing Letters Aims and scope Submit manuscript

Abstract

Multi-label classification is a special learning task where each instance may be associated with multiple labels simultaneously. There are two main challenges: (a) discovering and exploiting the label correlations automatically, and (b) separating the relevant labels from the irrelevant labels of each instance effectively. Nevertheless, many existing multi-label classification algorithms fail to deal with both challenges at the same time. In this paper, we integrate multi-label classification, label correlations and threshold calibration into a unified learning framework, and propose calibrated multi-label classification with label correlations, named CMLLC. Specifically, we firstly introduce a label covariance matrix to characterize the label correlations and a virtual label to calibrate label decision threshold of each instance. Secondly, the framework of our CMLLC model is constructed for joint learning of the label correlations and model parameters corresponding to each label and the virtual label. Lastly, the optimization problem is jointly convex and solved by an alternating iterative method. Experimental results on sixteen multi-label benchmark datasets in terms of five evaluation criteria demonstrate that CMLLC outperforms the state-of-the-art multi-label classification algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Schapire RE, Singer Y (2000) Boostexter: a boosting-based system for text categorization. Mach Learn 39(2/3):135–168

    Article  Google Scholar 

  2. Zhang ML, Zhou ZH (2006) Multilabel neural networks with applications to functional genomics and text categorization. IEEE Trans Knowl Data Eng 18(10):1338–1351

    Article  Google Scholar 

  3. Yan Y, Wang Y, Gao WC (2018) LSTM: multi-label ranking for document classification. Neural Process Lett 47(1):117–138

    Article  Google Scholar 

  4. Boutell MR, Luo J, Luo JB, Shen XP, Brown CM (2004) Learning multi-label scene classification. Pattern Recognit 37(9):1757–1771

    Article  Google Scholar 

  5. Jiang A, Wang C, Zhu Y (2008) Calibrated rank-SVM for multi-label image categorization. In: Proceedings of the international joint conference on neural networks, Hong Kong, China, pp 1450–1455

  6. Liu W, Yang X, Tao D (2018) Multiview dimension reduction via Hessian multiset canonical correlations. Inf Fusion 41:119–128

    Article  Google Scholar 

  7. Yu J, Zhang B, Kuang Z (2017) iPrivacy: image privacy protection by identifying sensitive objects via deep multi-task learning. IEEE Trans Inf Forensics Secur 12(5):1005–1016

    Article  Google Scholar 

  8. Yu J, Yang X, Gao F (2017) Deep multimodal distance metric learning using click constraints for image ranking. IEEE Trans Cybern 47(12):4014–4024

    Article  Google Scholar 

  9. Tao D, Hong C, Yu J (2015) Multimodal deep autoencoder for human pose recovery. IEEE Trans Image Process 24(12):5659–5670

    Article  MathSciNet  Google Scholar 

  10. Trohidis K, Tsoumakas G, Kalliris G, Vlahavas IP (2008) Multilabel classification of music into emotions. In: Proceedings of the 9th international conference on music information retrieval, Philadephia, PA, USA, pp 325–330

  11. Zhang ML, Zhou ZH (2014) A review on multi-label learning algorithms. IEEE Trans Knowl Data Eng 26(8):1819–1837

    Article  Google Scholar 

  12. Huang SJ, Yu Y, Zhou ZH (2012) Multi-label hypothesis reuse. In: Proceedings of the 18th ACM SIGKDD international conference on knowledge discovery and data mining, Beijing, China, pp 525–533

  13. Elisseeff A, Weston J (2001) A kernel method for multi-labelled classification. In: Proceedings of the 14th conference on neural information processing systems (NIPS2001), Vancouver, British Columbia, Canada, pp 681–687

  14. Zhang ML, Pena JM, Robles V (2009) Feature selection for multi-label naive Bayes classification. Inf Sci 179(19):3218–3229

    Article  Google Scholar 

  15. Zhang ML (2009) ML-RBF: RBF neural networks for multi-label learning. Neural Process Lett 29(2):61–74

    Article  Google Scholar 

  16. Read J, Pfahringer B, Holmes G, Frank E (2011) Classifier chains for multi-label classification. Mach Learn 85(3):333–359

  17. Tsoumakas G, Katakis I, Vlahavas I (2008) Effective and efficient multilabel classification in domains with large number of labels. In: Proceedings of ECML/PKDD 2008 workshop on mining multidimensional data, Antwerp, Belgium, pp 30–44

  18. Ghamrawi N, Mccallum A (2005) Collective multilabel classification. In: Proceedings of the 14th ACM international conference on information and knowledge management, Bremen, Germany, pp 195–200

  19. Godbole S, Sarawagi S (2004) Discriminative methods for multi-labeled classification. In: Dai H, Srikant R, Zhang C (eds) Lecture Notes in Artificial Intelligence, vol 3056. Springer, Berlin, pp 22–30

  20. Chen G, Song YQ, Wang F, et al (2008) Semi-supervised multi-label learning by solving a Sylvester equation. In: SIAM conference on data mining, Atlanta, Georgia, pp 410–419

  21. Gu Q, Li Z, Han J (2011) Correlated multi-label feature selection. In: Proceedings of the 20th ACM international conference on information and knowledge management, Glasgow, Scotland, UK, pp 1087–1096

  22. Zhang Y, Yeung DY (2013) Multilabel relationship learning. ACM Trans Knowl Discov Data 7(2):1–30

    Article  Google Scholar 

  23. Zhu Y, Kwok JT, Zhou ZH (2017) Multi-Label Learning with Global and Local Label Correlation. IEEE Trans Knowl Data Eng, arXiv preprint, arXiv:1704:01415

  24. He ZF, Yang M, Liu HD (2014) Joint learning of multi-label classification and label correlations. J Softw 25(9):1967–1981 (in Chinese)

    MATH  Google Scholar 

  25. Hullermeier E, Furnkranz J, Cheng W, Brinker K (2008) Label ranking by learning pairwise preferences. Artif Intell 172(16):1897–1916

    Article  MathSciNet  Google Scholar 

  26. Furnkranz F, Hullermeier E, Mencia EL, Brinker K (2008) Multilabel classification via calibrated label ranking. Mach Learn 73(2):133–153

    Article  Google Scholar 

  27. Read J (2008) A pruned problem transformation method for multi-label classification. In: Proceedings of New Zealand computer science research student conference, Christchurch, New Zealand, pp 143–150

  28. Tsoumakas G, Katakis I, Vlahavas I (2011) Random k-labelsets for multilabel classification. IEEE Trans Knowl Data Eng 23(7):1079–1089

    Article  Google Scholar 

  29. Gharroudi O, Elghazel H, Aussem A (2015) Calibrated k-labelsets for ensemble multi-label classification. In: Proceedings of international conference on neural information processing, pp 573–582

  30. He ZF, Yang M, Liu HD (2015) Multi-task joint feature selection for multi-label classification. Chin J Electron 24(CJE–2):281–287

    Article  Google Scholar 

  31. Sun Z, Zhao Y, Cao D, Hao H (2017) Hierarchical multilabel classification with optimal path prediction. Neural Process Lett 45(1):263–277

    Article  Google Scholar 

  32. Xu J (2012) An efficient multi-label support vector machine with a zero label. Expert Syst Appl 39(5):4796–4804

    Article  Google Scholar 

  33. Xu J (2014) Multi-label core vector machine with a zero label. Pattern Recognit 47(7):2542–2557

    Article  Google Scholar 

  34. Clare A, King RD (2001) Knowledge discovery in multi-label phenotypedata. In: Raedt LD, Siebes A (eds) Lecture Notes in Computer Science. Springer, Berlin, pp 42–53

    MATH  Google Scholar 

  35. Zhang ML, Zhou ZH (2007) ML-KNN: a lazy learning approach to multi-label learning. Pattern Recognit 40(7):2038–2048

    Article  Google Scholar 

  36. Kwok JT (1999) Moderating the outputs of support vector machine classifiers. IEEE Trans Neural Netw 10(5):1018–1031

    Article  Google Scholar 

  37. Xu J (2013) Fast multi-label core vector machine. Pattern Recognit 46(3):885–898

    Article  Google Scholar 

  38. Zhang Y, Yeung DY (2010) A convex formulation for learning task relationships in multi-task learning. In: Proceedings of the 26th conference on uncertainty in artificial intelligence, Catalina Island, California, pp 733–742

  39. Chao G, Sun S (2016) Consensus and complementarity based maximum entropy discrimination for multi-view classification. Inf Sci 367–368:296–310

    Article  Google Scholar 

  40. Boyd S, Vandenberghe L (2004) Convex optimization. Cambridge University Press, New York

    Book  Google Scholar 

  41. Chen J, Ye J (2008) Training SVM with indefinite kernels. In: Proceedings of the 25th international conference on machine learning, Helsinki, Finland, pp 136–143

  42. Tsoumakas G, Xioufis ES, Vilcek J (2011) Mulan: a java library for multi-label learning. J Mach Learn Res 12(7):2411–2414

    MathSciNet  MATH  Google Scholar 

  43. Demsar J (2006) Statistical comparisons of classifiers over multiple data sets. J Mach Learn Res 7:1–30

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China under Grants 61876087, 61502058, the State Key Program of National Natural Science Foundation of China under Grant 61432008, the Science and Technology Research Project of Jiangxi Provincial Education Department under Grant GJJ151262, Natural Science Foundation of Educational Committee of Jiangsu Province under Grant 15KJB520002, and the Social Science Research Project of Pingxiang under Grant 2017XW02. The authors would like to thank the anonymous reviewers and the editors for their helpful comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming Yang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, ZF., Yang, M., Liu, HD. et al. Calibrated Multi-label Classification with Label Correlations. Neural Process Lett 50, 1361–1380 (2019). https://doi.org/10.1007/s11063-018-9925-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11063-018-9925-2

Keywords

Navigation