Neural Processing Letters

, Volume 47, Issue 2, pp 365–389 | Cite as

Finite-Time Lag Synchronization for Memristive Mixed Delays Neural Networks with Parameter Mismatch

  • Lingzhong Zhang
  • Yongqing Yang
  • Fei Wang
  • Xin Sui


This paper is devoted to study the finite time lag synchronization problem of memristive mixed delays neural networks with switching jumps and parameter mismatch. The main objective of this paper is to design simple linear feedback control such as the drive response systems can realize synchronization in the finite time. Several theoretical aspects are addressed, mean Filippov differential inclusion and set-valued map. Based on the Gronwall’s inequality and properties of differential operation, a new finite time lag synchronization scheme is proposed to guarantee that coupled memristive mixed delays neural networks are in a state of lag synchronization in finite time. In addition, finite lag synchronization criteria of two identical memristive mixed delays neural networks are also considered. Finally, numerical examples are presented to illustrate the effectiveness of the our proposed theorems.


Finite-time lag synchronization Mixed delays neural networks Memristor 


  1. 1.
    Chua LO (1971) Memristor—the missing circuit element. IEEE Trans Circuit Theory 18:507–519CrossRefGoogle Scholar
  2. 2.
    Chua LO, Kang SM (1976) Memristive devices and systems. Proc IEEE 64(2):209–223MathSciNetCrossRefGoogle Scholar
  3. 3.
    Strukov DB, Snider GS, Stewart DR, Williams RS (2008) The missing memristor found. Nature 453:80–83CrossRefGoogle Scholar
  4. 4.
    Tour JM, He T (2008) Electronics: the fourth element. Nature 453:42–43CrossRefGoogle Scholar
  5. 5.
    Sharifi MJ, Banadaki YM (2010) General SPICE models for memristor and application to circuit simulation of memristor-based synapses and memory cells. J Circuits Syst Comput 19:407–424CrossRefGoogle Scholar
  6. 6.
    Itoh M, Chua LO (2008) Memristor oscillators. Int J Bifurc Chaos 18(11):3183–3206MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Nie X, Zheng WX, Cao J (2015) Multistability of memristive Cohen–Grossberg neural networks with non-monotonic piecewise linear activation functions and time-varying delays. Neural Netw 71:27–36CrossRefGoogle Scholar
  8. 8.
    Itoh M, Chua LO (2009) Memristor cellular automata and memristor discrete-time cellular neural networks. Int J Bifurc Chaos 19(11):3605–3656CrossRefMATHGoogle Scholar
  9. 9.
    Wang X, Chen Y, Xi H, Li H, Dimitrov D (2009) Spintronic memristor through spin-torque-induced magnetization motion. IEEE Electron Device Lett 30(3):294–297CrossRefGoogle Scholar
  10. 10.
    Pershin YV, Ventra MD (2010) Experimental demonstration of associative menmory with memristive neural networks. Neural Netw 23:881–886CrossRefGoogle Scholar
  11. 11.
    Jo SH, Chang T, Ebong I, Bhadviya BB (2010) Nanocsale memristor device as synapse in neuromorphic systems. Nano Lett 10:1297–1301CrossRefGoogle Scholar
  12. 12.
    Hu J, Wang J (2010) Global uniform asymptotic stability of memristor-based recurrent neural networks with time delays. Int Joint Conf Neural Netw 1–8. doi: 10.1109/IJCNN.2010.5596359
  13. 13.
    Kim H, Sah MP, Yang C, Roska T, Chua LO (2012) Memristor bridge synapses. Proc IEEE 100(6):2061–2070CrossRefGoogle Scholar
  14. 14.
    Mu C, Ni Z, Sun C et al (2017) Air-breathing hypersonic vehicle tracking control based on adaptive dynamic programming. IEEE Trans Neural Netw Learn Syst 28(3):584–598MathSciNetCrossRefGoogle Scholar
  15. 15.
    Ding W, Chaoxu M (2017) Developing nonlinear adaptive optimal regulators through an improved neural learning mechanism. Sci China Inf Sci 60(5):058201CrossRefGoogle Scholar
  16. 16.
    Tang Y, Xing X, Karimi HR et al (2016) Tracking control of networked multi-agent systems under new characterizations of impulses and its applications in robotic systems. IEEE Trans Ind Electron 63(2):1299–1307CrossRefGoogle Scholar
  17. 17.
    Tang Y, Gao H, Zhang W et al (2015) Leader-following consensus of a class of stochastic delayed multi-agent systems with partial mixed impulses. Automatica 53:346–354MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Wu X, Tang Y, Zhang W (2016) Stability analysis of stochastic delayed systems with an application to multi-agent systems. IEEE Trans Autom Control 61(12):4143–4149CrossRefGoogle Scholar
  19. 19.
    Yang X, Ho DW (2016) Synchronization of delayed memristive neural networks: robust analysis approach. IEEE Trans Cybern 46(12):3377–3387CrossRefGoogle Scholar
  20. 20.
    Li N, Cao JD (2016) Lag synchronization of memristor-based coupled neural networks via-measure. IEEE Trans Neural Netw Learn Syst 27(3):686–697MathSciNetCrossRefGoogle Scholar
  21. 21.
    Ding SB, Wang ZS (2016) Lag quasi-synchronization for memristive neural networks with switching jumps mismatch. Neural Comput Appl 1–12. doi: 10.1007/s00521-016-2291-y
  22. 22.
    Wang X, Li C, Huang T, Duan S (2014) Global exponential stability of a class of memristive neural networks with time-varying delays. Neural Comput Appl 24(7–8):1707–1715CrossRefGoogle Scholar
  23. 23.
    Yang X, Cao J, Liang J (2016) Exponential synchronization of memristive neural networks with delays: interval matrix method. IEEE Trans Neural Netw Learn Syst 1–11. doi: 10.1109/TNNLS.2016.2561298
  24. 24.
    Abdurahman A, Jiang H, Teng Z (2015) Finite-time synchronization for memristor-based neural networks with time-varying delays. Neural Netw 69:20–28CrossRefGoogle Scholar
  25. 25.
    Bao HB, Cao JD (2016) Finite-time generalized synchronization of nonidentical delayed chaotic systems. Nonlinear Anal 21(3):306–324MathSciNetGoogle Scholar
  26. 26.
    Liao CW, Lu CY (2011) Design of delay-dependent state estimator for discrete-time recurrent neural networks with interval discrete and infinite-distributed time-varying delays. Cogn Neurodyn 5(2):133–143CrossRefGoogle Scholar
  27. 27.
    Liu Y, Zhang D, Lu J et al (2016) Global-stability criteria for quaternion-valued neural networks with unbounded time-varying delays. Inf Sci 360:273–288CrossRefGoogle Scholar
  28. 28.
    Liu X, Ho DW, Yu WW, Cao JD (2014) A new switching design to finite-time stabilization of nonlinear systems with applications to neural networks. Neural Netw 57:94–102CrossRefMATHGoogle Scholar
  29. 29.
    Mu C, Sun C (2015) A new finite time convergence condition for super twisting observer based on Lyapunov analysis. Asian J Control 17(3):1050–1060MathSciNetCrossRefMATHGoogle Scholar
  30. 30.
    Mu C, Xu W, Sun C (2016) On switching manifold design for terminal sliding mode control. J Franklin Inst 353(7):1553–1572MathSciNetCrossRefMATHGoogle Scholar
  31. 31.
    Liu Y, Zhang D, Lu J (2017) Global exponential stability for quaternion-valued recurrent neural networks with time-varying delays. Nonlinear Dyn 87(1):553–565CrossRefMATHGoogle Scholar
  32. 32.
    Wen S, Zeng Z, Huang T et al (2015) Lag synchronization of switched neural networks via neural activation function and applications in image encryption. IEEE Trans Neural Netw Learn Syst 26(7):1493–1502MathSciNetCrossRefGoogle Scholar
  33. 33.
    Yang X, Cao J, Qiu J (2015) pth moment exponential stochastic synchronization of coupled memristor-based neural networks with mixed delays via delayed impulsive control. Neural Netw 65:80–91CrossRefGoogle Scholar
  34. 34.
    Yang XS, Cao DJ, Yu WW (2014) Exponential synchronization of memristive Cohen–Grossberg neural networks with mixed delays. Cogn Neurodyn 8(3):239–249CrossRefGoogle Scholar
  35. 35.
    Mu C, Sun C, Song A et al (2016) Iterative GDHP-based approximate optimal tracking control for a class of discrete-time nonlinear systems. Neurocomputing 214:775–784CrossRefGoogle Scholar
  36. 36.
    Aubin JP, Frankowska H (2009) Set-valued analysis. Springer, New YorkCrossRefMATHGoogle Scholar
  37. 37.
    Forti M, Nistri P, Quincampoix M (2004) Generalized neural network for nonsmooth nonlinear programming problems. IEEE Trans Circuits Syst I Regul Pap 51(9):1741–1754MathSciNetCrossRefMATHGoogle Scholar
  38. 38.
    Forti M, Nistri P, Papini D (2005) Global exponential stability and global convergence in finite time of delayed neural networks with infinite gain. IEEE Trans Neural Netw 16(6):1449–1463CrossRefGoogle Scholar
  39. 39.
    Chua L (2011) Resistance switching memories are memristors. Appl Phys A 102(4):765–783CrossRefMATHGoogle Scholar
  40. 40.
    Chen J, Zeng Z, Jiang P (2014b) Global Mittag–Leffler stability and synchronization of memristor-based fractional-order neural networks. Neural Netw 51:1–8CrossRefMATHGoogle Scholar
  41. 41.
    Wang LM, Shen Y, Yin Q, Zhang GD (2015) Adaptive synchronization of memristor-based neural networks with time-varying delays. IEEE Trans Neural Netw Learn Syst 26(9):2033–2042MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Lingzhong Zhang
    • 1
  • Yongqing Yang
    • 1
  • Fei Wang
    • 1
  • Xin Sui
    • 1
  1. 1.School of Science, Key Laboratory of Advanced Process Control for Light Industry (Ministry of Education)Jiangnan UniversityWuxiPeople’s Republic of China

Personalised recommendations