Adaptive identifier for uncertain complex-valued discrete-time nonlinear systems based on recurrent neural networks

Abstract

Recently, the study of dynamic systems and signals in the frequency domain motivates the emergence of new tools. In particular, electrophysiological and communications signals in the complex domain can be analyzed but hardly, they can be modeled. This problem promotes an attractive field of researching in system theory. As a consequence, adaptive algorithms like neural networks are interesting tools to deal with the identification problem of this kind of systems. In this study, a new learning process for recurrent neural network applied on complex-valued discrete-time nonlinear systems is proposed. The Lyapunov stability framework is applied to obtain the corresponding learning laws by means of the so-called Lyapunov control functions. The region where the identification error converges is defined by the power of uncertainties and perturbations that affects the nonlinear discrete-time complex system. This zone is obtained as an alternative result of the same Lyapunov analysis. An off-line training algorithm is derived in order to reduce the size of the convergence zone. The training is executed using a set of some off-line measurements coming from the uncertain system. Numerical results are developed to prove the efficiency of the methodology proposed in this study. A first example is oriented to identify the dynamics of a nonlinear discrete time complex-valued system and the second one to model the dynamics of an electrophysiological signal separated in magnitude and phase.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

References

  1. 1.

    Aibinu A, Salami J, Shafie A (2010) Determination of complex valued parametric model coefficients using artificial neural network technique. Adv Artif Neural Syst 2010:11

    Google Scholar 

  2. 2.

    Aizenberg I (2011) Complex valued neural networks with multi-valued neurons. Springer, Berlin

    Book  MATH  Google Scholar 

  3. 3.

    Aizenberg N, Ivaskiv L, Pospelov A (1971) About one generalization of the threshols function. Dokl Akad Nauk 196(6):1287–1290

    MathSciNet  Google Scholar 

  4. 4.

    Axler S, Ribet KA (2010) Complex analysis. Springer, New York

    Google Scholar 

  5. 5.

    Benvenuto N, Dinis R, Falconer D, Tomasin S (2010) Single carrier modulation with nonlinear frequency domain equalization: an idea whose time has come-again. Proc IEEE 98(1):69–96

    Article  Google Scholar 

  6. 6.

    Benvenuto N, Piazza F (1992) On the complex backpropagation algorithm. IEEE Trans Signal Process 40(4):967–969

    Article  Google Scholar 

  7. 7.

    Chairez I (2009) Wavelet differential neural network. IEEE Trans Neural Netw 20:1439–1449

    Article  Google Scholar 

  8. 8.

    Cotter NE (1990) The stone-weierstrass theorem and its application to neural networks. IEEE Trans Nueral Netw 1(4):290–295

    MathSciNet  Article  Google Scholar 

  9. 9.

    Dong-Chul P, Tae-Kyun J (2002) Complex bilinear recurrent neural network for equalization of a digital satellite channel. IEEE Trans Nueral Netw 13(3):711–725

    Article  Google Scholar 

  10. 10.

    Egmont-Petersen M, Ridder D, Handels H (2002) Image processing with neural networks: a review. Pattern Recognit 35(10):2279–2301

    Article  MATH  Google Scholar 

  11. 11.

    Freeman RA, Kokotovic PV (2008) Robust nonlinear control design. Birkhauser, Boston

    MATH  Google Scholar 

  12. 12.

    Georgiou G, Koutsougeras C (1992) Complex domain backpropagation. IEEE Trans Circuits Syst 39(5):330–334

    Article  MATH  Google Scholar 

  13. 13.

    Gompper G, Ihle T, Kroll D, Winkler RG (2008) Advances in polymer science, chap. multi particle collision dynamics: a particle-based mesoscale simulation approach to the hydrodynamics of complex fluids. Springer, Berlin

    Google Scholar 

  14. 14.

    Han S, Lee K (2010) Robust friction state observer and recurrent fuzzy neural network design for dynamic friction compensation with backstepping control. Mechatronics 20(3):384–401

    Article  Google Scholar 

  15. 15.

    Hernandez-Vargas E, Alanis A, Sanchez E (2012) Discrete-time neural observer for hiv infection dynamics. In: World Automation Congress (WAC)

  16. 16.

    Hirose A (2012) Complex valued neural networks. Springer, Berlin

    Book  MATH  Google Scholar 

  17. 17.

    Hussain Z, Sadik A, Shea P (2011) Digital signal processing and introduction with mathlab and applications, chap. 2 Discrte and digital signals and systems. Springer, Berlin

    Google Scholar 

  18. 18.

    J D, Sundararajan N, Saratchandran P (2002) Communication channel equalization using complex valued minimal radial basis function neural networks. IEEE Trans Neural Netw 13(3):687–696

    Article  Google Scholar 

  19. 19.

    Kim T, Adali T (2003) Approximation by fully complex multilayer perceptrons. Neural Comput 15(7):16411666

    Article  Google Scholar 

  20. 20.

    Kobayashi M, Yamazaki H (2003) Information geometry of complex-valued boltzmann machines. IEICE Trans Fundam Electron Commun Comput Sci J87–A(8):1093–1101

    Google Scholar 

  21. 21.

    Kuroe Y (2003) Complex-valued neural networks: theories and applications, chap. a model of complex-valued associative memories and its dynamics. World Scientific Pub Co Inc., River Edge

    Google Scholar 

  22. 22.

    Lakshmikantham V, Matrosov VM, Sivasundaram (1991) Vector Lyapunov functions and stability analysis of nonlinear systems. Kluwer, Amsterdam

    Book  MATH  Google Scholar 

  23. 23.

    Lee S, Mandic D (2006) An augmented extended kalman filter algorithm for complex-valued recurrent neural networks. In: IEEE International Conference on Acoustics, speech and signal processing (ICASSP)

  24. 24.

    Lee Goh S, Mandic DP (2004) A complex-valued rtrl algorithm for recurrent neural networks. Neural Comput 16(12):2699–2713

    Article  MATH  Google Scholar 

  25. 25.

    Lee Goh S, Mandic DP (2007) An augmented crtrl for complex-valued recurrent neural networks. Neural Netw 20:1061–1066

    Article  MATH  Google Scholar 

  26. 26.

    Leung H, Haykin S (1991) Complex domain backpropagation. IEEE Trans Signal Process 39(9):2101–2104

    Article  Google Scholar 

  27. 27.

    Mandic D, Su Lee Goh V (2009) Complex valued nonlinear adaptive filters. Wiley, Chichester

    Book  Google Scholar 

  28. 28.

    McLachlan MW (2010) Complex variable theory and transform calculus: with technical applications. Cambridge University Press, Cambridge

    Google Scholar 

  29. 29.

    Nitta T (1997) An extension of the back-propagation algorithm to complex-numbers. Neural Netw 10(8):1391–1415

    Article  Google Scholar 

  30. 30.

    Nitta T (2000) And analysis of the fundamental structure of complex valued neurons. Neural Process Lett 12:239–246

    Article  MATH  Google Scholar 

  31. 31.

    Noest AJ (1988) Discrete-state phasor neural networks. Phys Rev A 38:2196–2199

    Article  Google Scholar 

  32. 32.

    Noest AJ (1988) Phasor neural networks. Neural information processing systems. AIP, New York, pp 584–591

    Google Scholar 

  33. 33.

    Oppenheim A, Lim J (1981) The importance of phase in signals. Proc IEEE 69(5):529–541

    Article  Google Scholar 

  34. 34.

    Peng M, Chen S, Guanglin Y (2012) Proceedings of the international conference on information engineering and applications, chap. 74 Sparser signals and compressive sampling based on FFT and DWT Peng. Springer, London, pp 619–624

  35. 35.

    Poznyak A, Sanchez E, Yu W (2001) Differential neural networks for robust nonlinear control (identification, state estimation an trajectory tracking. World Scientific, River Edge

    Book  Google Scholar 

  36. 36.

    Poznyak AS, Medel J (1999) Matrix forgetting factor. Int J Syst Sci 30(2):165–174

    Article  MATH  Google Scholar 

  37. 37.

    Rizek S, Kucera M (1999) Hard-limits neural nets with electrooptical elements. Neural Netw World 9(6):417–487

    Google Scholar 

  38. 38.

    Salgado I, Chairez I (2009) Discrete time recurrent neural network observer. In: 2009 International Joint Conference on Neural Networks, pp 909–916

  39. 39.

    Salgado I, Chairez I (2013) Discrete-time recurrent neural network observer. Neurocomputing 101:73–81

    Article  Google Scholar 

  40. 40.

    Tanaka T, Mandic D (2007) Complex empirical mode decomposition. IEEE Signal Process Lett 14(2):101–104

    Article  Google Scholar 

  41. 41.

    Wang Z, Liu Y, Liu X (2009) State estimation for jumping recurrent neural networks with discrete and distributed delays. Neural Netw 22(1):41–48

    Article  Google Scholar 

  42. 42.

    Wen S, Zeng Z, Haung T, Chen Y (2013) Passivity analysis of memristor-based recurrent neural networks with time-varying delays. J Frankl Inst 350(8):2354–2370

    Article  MATH  Google Scholar 

  43. 43.

    Xia Y, Jelfs B, Van Hulle MM, Principe J, Mandic DP (2011) An augmented echo state network for nonlinear adaptive filtering of complex noncircular signals. IEEE Trans Neural Netw 22:74–83

    Article  Google Scholar 

  44. 44.

    Zhou J, Gao S (2013) An esperimental study on the auto-association neural network with electronic image processing. LNEE 178(3)(1):395–401

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to I. Chairez.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Alfaro-Ponce, M., Salgado, I., Arguelles, A. et al. Adaptive identifier for uncertain complex-valued discrete-time nonlinear systems based on recurrent neural networks. Neural Process Lett 43, 133–153 (2016). https://doi.org/10.1007/s11063-015-9407-8

Download citation

Keywords

  • Complex-valued systems
  • Non-parametric modeling
  • Recurrent neural networks
  • Lyapunov control functions