Advertisement

Neural Processing Letters

, Volume 42, Issue 1, pp 139–153 | Cite as

Ant Colony Optimization Inspired Algorithm for 3D Object Segmentation into its Constituent Parts

  • Rafael Arnay
  • Leopoldo Acosta
  • Javier Sanchez-Medina
Article
  • 229 Downloads

Abstract

This work focuses on the use of an Ant colony optimization (ACO) based approach to the problem of 3D object segmentation. The ACO metaheuristic uses a set of agents (artificial ants) to explore a search space. This kind of metaheuristic can be classified as a Natural computing non-deterministic technique, which is frequently used when the size of the search space makes the use of analytic mathematical tools unaffordable. The exploration is influenced by heuristic information, determined by each particular problem. Agents communicate with each other through the pheromone trails, which act as the common memory for the colony. In the approach presented, the agents start their exploration at the outer contour of an object. The final result is given after a certain number of generations, when the particular solutions of the agents converge to create the global paths followed by the colony. These paths coherently connect the object’s high curvature areas, facilitating the segmentation process. The advantage of this convergence mechanism is that it avoids the problem of over-segmentation by detecting regions based on the global structure of the object and not just on local information.

Keywords

Image segmentation Ant colony optimization 3D image processing  Natural computing swarm intelligence Multi-agent systems 

Notes

Acknowledgments

The authors gratefully acknowledge the contribution of the Spanish Ministry of Science and Technology under Projects SAGENIA DPI2010-18349 and STIRPE DPI2013-4689 and the funds from the Agencia Canaria de Investigación, Innovación y Sociedad de la Información (ACIISI).

References

  1. 1.
    Lai K, Bo L, Ren X, Fox D (2011) A large-scale hierarchical multi-view rgb-d object dataset. In: Proceedings of international conference on robotics and automation (ICRA)Google Scholar
  2. 2.
    Marton ZC, Balint-Benczedi F, Blodow N, Cosmin L, Beetz M (2012) Object categorization in clutter using additive features and hashing of part-graph descriptors. In: Proceedings of spatial cognition (SC)Google Scholar
  3. 3.
    Rabbani T, Vosselman G (2006) Segmentation of point clouds using smoothness constraint. In: ISPRS commission V symposium ’Image Engineering and Vision Metrology’Google Scholar
  4. 4.
    Pauling F, Bosse M, Zlot R (2009) Automatic segmentation of 3D laser point clouds by ellipsoidal region growing. In: Proceedings of the Australasian conference on robotics & automation (ACRA)Google Scholar
  5. 5.
    Golovinskiy A, Funkhouser T (2009) Min-cut based segmentation of point clouds. Princeton UniversityGoogle Scholar
  6. 6.
    Moosmann F, Pink O, Stiller C (2009) Segmentation of 3D Lidar data in non-flat urban environments using a local convexity criterion. In: IEEE intelligent vehicles symposium, pp 215–220Google Scholar
  7. 7.
    Strom J, Richardson A, Olson E (2010) Graph-based segmentation of colored 3d laser point clouds. In: Proceedings of the IEEE/RSJ international conference on intelligent robots and systems (IROS)Google Scholar
  8. 8.
    Douillard B, Underwood J, Kuntz N, Vlaskine V, Quadros A, Morton P, Frenkel A (2011) On the segmentation of 3D LIDAR point clouds. In: International conference on robotics and automation (I1CRA)Google Scholar
  9. 9.
    Triebel R, Shin J, Siegwart R (2010) Segmentation and unsupervised part-based discovery of repetitive objects. In: Proceedings of Robotics: Science and SystemsGoogle Scholar
  10. 10.
    Xiao-Nian W, Yuan-Jing F, Zu-Ren F (2005) Ant colony optimization for image segmentation. Machine Learning and CyberneticsGoogle Scholar
  11. 11.
    Zhao B, Zhu Z, Mao E, Song Z (2007) Image segmentation based on ant colony optimization and K-means clustering. In: Proceedings of the IEEE international conference on automation and logisticsGoogle Scholar
  12. 12.
    Tao W, Jin H, Liu L (2007) Object segmentation using ant colony optimization algorithm and fuzzy entropy. Pattern Recognit Lett 28(7):788–796CrossRefGoogle Scholar
  13. 13.
    Cerello P, Gargano G, Gemme G, Lopez Torres E, Luca Masala G, Peroni C, Santoro M, Christian Cheran S, Bagnasco S, Bellotti R, Bolanos L, Catanzariti E, De Nunzio G, Evelina Fantacci M, Fiorina E (2010) 3-D object segmentation using ant colonies. Pattern Recognit 43(4):1476–1490CrossRefGoogle Scholar
  14. 14.
    Aydin D, Ugur A (2011) Extraction of flower regions in color images using ant colony optimization. Procedia Comput Sci 3:530–536CrossRefGoogle Scholar
  15. 15.
    Moussa R, Beurton-Aimar M, Desbarats P (2009) Multi-agent segmentation for 3D medical images. Information Technology and Applications in BiomedicineGoogle Scholar
  16. 16.
    Dorigo M, Sttzle T (2002) The Ant colony optimization metaheuristic: algorithms, applications and advances. In: Glover F, Kochenberger GA (eds) Handbook of metaheuristics. Springer, New YorkGoogle Scholar
  17. 17.
    Dorigo M, Sttzle T (2004) Ant colony optimization. MIT Press, CambridgeCrossRefGoogle Scholar
  18. 18.
    Dorigo M, Maniezo V, Colorni A (1996) The ant system: optimization by a colony of cooperating agents. IEEE Trans Syst, Man Cybern Part B 26:29–41CrossRefGoogle Scholar
  19. 19.
    Marton ZC, Pangercic D, Blodow N, Kleinehellefort J, Beetz M (2010) General 3D modelling of novel objects from a single view. In: Proceedings of the 2010 IEEE/RSJ international conference on intelligent robots and systems (IROS)Google Scholar
  20. 20.
    Rusu RB, Cousin S (2011) 3D is here: point cloud library (PCL). In: IEEE international conference on robotics and automation (ICRA)Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Rafael Arnay
    • 1
  • Leopoldo Acosta
    • 1
  • Javier Sanchez-Medina
    • 2
  1. 1.Department of System Engineering and Control and Computer ArchitectureLa Laguna UniversityLa LagunaSpain
  2. 2.CICEI, Computer Science DepartmentUniversity of Las Palmas de Gran Canaria (ULPGC)Las PalmaSpain

Personalised recommendations