Extreme Learning Machines for Feature Selection and Classification of Cocaine Dependent Patients on Structural MRI Data

Abstract

In this paper, we present a Computer Aided Diagnosis and image biomarker identification system for cocaine dependence, which selects relevant regions from a set of brain structural magnetic resonance images (sMRI). After sMRI volume preprocessing for spatial normalization, we compute Pearson’s correlation between pixel values across volumes and the indicative variable, obtaining a volume of correlation values (VCV). We calculate the gradient of the VCV which is used to perform a watershed segmentation of the brain volume into regions. A region selection stage finds the most relevant watershed regions. We propose two different approaches to characterize region relevance: (a) a wrapper procedure using extreme learning machines (ELM), and (b) apply correlation distribution percentiles to select most discriminant regions. Next, we consider three different procedures to extract the image features corresponding to selected regions: (1) collecting the sMRI intensity values of all the voxels that compose each region, compute (2) the mean or (3) the median of the sMRI intensity value of the voxels contained in each selected region. Extracted feature vectors are used to build a classifier aiming to discriminate between cocaine dependent patients and healthy controls. We compare results of several classifiers: ELM, OP-ELM, SVM and 1NN. Also, we visualize the brain locations of selected regions, checking if these locations are in accordance with previous findings in the medical literature.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Notes

  1. 1.

    (ICBM, http://www.loni.ucla.edu/Atlases/).

  2. 2.

    (http://www.fmrib.ox.ac.uk/fsl/).

References

  1. 1.

    Barrós-Loscertales A, Garavan H, Bustamante JC, Ventura-Campos N, Llopis JJ, Belloch V, Parcet MA, Ávila C (2011) Reduced striatal volume in cocaine-dependent patients. NeuroImage 56:1021–1026

    Article  Google Scholar 

  2. 2.

    Franklin TR, Acton PD, Maldjian JA, Gray JD, Croft JR, Dackis CA, O’Brien CP, Childress AR (2002) Decreased gray matter concentration in the insular, orbitofrontal, cingulate, and temporal cortices of cocaine patients. Biol Psychiatr 51:134–142

    Article  Google Scholar 

  3. 3.

    Besga A, Termenon M, Graña M, Echeveste J, Pérez J, Gonzalez-Pinto A (2012) Discovering Alzheimer’s disease and bipolar disorder white matter effects building computer aided diagnostic systems on brain diffusion tensor imaging features. Neurosci Lett 520:71–76

    Article  Google Scholar 

  4. 4.

    Graña M, Termenon M, Savio A, Gonzalez-Pinto A, Echeveste J, Pérez JM, Besga A (2011) Computer aided diagnosis system for alzheimer disease using brain diffusion tensor imaging features selected by pearson’s correlation. Neurosci Lett 502:225–229

    Article  Google Scholar 

  5. 5.

    Guyon I, Elisseeff A (2003) An introduction to variable and feature selection. J Mach Learn Res 3:1157–1182

    MATH  Google Scholar 

  6. 6.

    Savio A, Charpentier J, Termenon M, Shinn AK, Graña M (2010) Neural classifiers for schizophrenia diagnostic support on diffusion imaging data. Neural Netw World 20:935–949

    Google Scholar 

  7. 7.

    Davatzikos C, Fan Y, Wu X, Shen D, Resnick S (2008) Detection of prodromal alzheimer’s disease via pattern classification of magnetic resonance imaging. Neurobiol Aging 29:514–523

    Article  Google Scholar 

  8. 8.

    Vincent L, Soille P (1991) Watersheds in digital spaces: an efficient algorithm based on immersion simulations. IEEE Trans Pattern Anal Mach Intell 13:583–598

    Article  Google Scholar 

  9. 9.

    Shafarenko L, Petrou M, Kittler J (1997) Automatic watershed segmentation of randomly textured color images. IEEE Trans Image Process 6:1530–1544

    Article  Google Scholar 

  10. 10.

    Fan Y, Shen D, Gur RC, Gur RE, Davatzikos C (2007) COMPARE: classification of morphological patterns using adaptive regional elements. IEEE Trans Med Imaging 23:3–105

    Google Scholar 

  11. 11.

    Grau V, Mewes A, Alcaniz M, Kikinis R, Warfield S (2004) Improved watershed transform for medical image segmentation using prior information. IEEE Trans Med Imaging 23:447–458

    Article  Google Scholar 

  12. 12.

    Sijbers J, Scheunders P, Verhoye M, van der Linden A, van Dyck D, Raman E (1997) Watershed-based segmentation of 3D MR data for volume quantization. Magn Reson Imaging 15(6):679–688

    Article  Google Scholar 

  13. 13.

    Huang G-B, Zhu Q-Y, Siew C-K (2006) Extreme learning machine: theory and applications. Neurocomputing 70:489–501

    Article  Google Scholar 

  14. 14.

    Huang G-B, Wang DH, Lan Y (2011) Extreme learning machines: a survey. Int J Mach Learn Cybern 2(2):107–122

    Article  Google Scholar 

  15. 15.

    Chen F, Ou T (2011) Sales forecasting system based on gray extreme learning machine with taguchi method in retail industry. Expert Syst Appl 38:1336–1345

    Article  Google Scholar 

  16. 16.

    Sun Z-L, Choi T-M, Au K-F, Yu Y (2008) Sales forecasting using extreme learning machine with applications in fashion retailing. Decis Support Syst 46:411–419

    Article  Google Scholar 

  17. 17.

    Wong W, Guo Z (2010) A hybrid intelligent model for medium-term sales forecasting in fashion retail supply chains using extreme learning machine and harmony search algorithm. Int J Prod Econ 128:614–624

    Article  Google Scholar 

  18. 18.

    Zong W, Huang G-B (2011) Face recognition based on extreme learning machine. Neurocomputing 74:2541–2551

    Article  Google Scholar 

  19. 19.

    Marques I, Graña M (2012) Face recognition with lattice independent component analysis and extreme learning machines. Soft Comput. 16(9): 1525–1537

    Google Scholar 

  20. 20.

    Mohammed A, Minhas R, Jonathan WuQ, Sid-Ahmed M (2011) Human face recognition based on multidimensional PCA and extreme learning machine. Pattern Recognit 44:2588–2597

    Article  MATH  Google Scholar 

  21. 21.

    Yuan Q, Zhou W, Li S, Cai D (2011) Epileptic EEG classification based on extreme learning machine and nonlinear features. Epilepsy Res 96:29–38

    Article  Google Scholar 

  22. 22.

    Shi L-C, Lu B-L (2013) EEG-based vigilance estimation using extreme learning machines. Neurocomputing 102:135–143

    Article  Google Scholar 

  23. 23.

    Cao J, Lin Z, Huang G-B, Liu N (2012) Voting based extreme learning machine. Inf Sci 185:66–77

    MathSciNet  Article  Google Scholar 

  24. 24.

    Huang G-B, Wang D (2011) Advances in extreme learning machines (ELM2010). Neurocomputing 74:2411–2412

    Article  Google Scholar 

  25. 25.

    Huang G-B, Chen L (2007) Convex incremental extreme learning machine. Neurocomputing 70:3056–3062

    Google Scholar 

  26. 26.

    Huang G-B, Li M-B, Chen L, Siew C-K (2008) Incremental extreme learning machine with fully complex hidden nodes. Neurocomputing 71:576–583

    Article  Google Scholar 

  27. 27.

    Huang G-B, Ding X, Zhou H (2010) Optimization method based extreme learning machine for classification. Neurocomputing 74:155–163

    Article  Google Scholar 

  28. 28.

    Lan Y, Soh YC, Huang G-B (2009) Ensemble of online sequential extreme learning machine. Neurocomputing 72:3391–3395

    Article  Google Scholar 

  29. 29.

    Miche Y, Sorjamaa A, Bas P, Simula O, Jutten C, Lendasse A (2010) OP-ELM: optimally pruned extreme learning machine. IEEE Trans Neural Netw 21:158–162

    Article  Google Scholar 

  30. 30.

    Ashburner J, Friston KJ (2005) Unified segmentation. NeuroImage 26:839–851

    Article  Google Scholar 

  31. 31.

    Beucher S, Lantuejoul C (1979) Use of watersheds in contour detection. In: International Workshop on image processing, real-time edge and motion detection/estimation, Rennes, France, September

  32. 32.

    Meyer F (1994) Topographic distance and watershed lines. Signal Process 38:113–125

    Article  MATH  Google Scholar 

  33. 33.

    Oldfield RC (1971) The assessment and analysis of handedness: the edinburgh inventory. Neuropsychologia 9:97–113

    Article  Google Scholar 

  34. 34.

    Van Rijsbergen C (1979) Information retrieval, Butterworth-Heinemann, Oxford

  35. 35.

    Vapnik VN (1998) Statistical learning theory. Wiley-Interscience, New York

    MATH  Google Scholar 

  36. 36.

    Huang G-B, Zhou H, Ding X, Zhang R (2012) Extreme learning machine for regression and multiclass classification. IEEE Trans Syst Man Cybernet B 42(2):513–529

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to M. Graña.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Termenon, M., Graña, M., Barrós-Loscertales, A. et al. Extreme Learning Machines for Feature Selection and Classification of Cocaine Dependent Patients on Structural MRI Data. Neural Process Lett 38, 375–387 (2013). https://doi.org/10.1007/s11063-013-9277-x

Download citation

Keywords

  • Extreme learning machine
  • Neuroimaging
  • Cocaine dependence