Skip to main content
Log in

State-Space Recurrent Fuzzy Neural Networks for Nonlinear System Identification

  • Published:
Neural Processing Letters Aims and scope Submit manuscript

Abstract

In this paper, we propose a new recurrent fuzzy neural network, which has the standard state space form, we call it state-space recurrent neural networks. Input-to-state stability is applied to access robust training algorithms for system identification. Stable learning algorithms for the premise part and the consequence part of fuzzy rules are proved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chen D. S. and Jain R. C.: A robust back propagation learning algorithm for function approximation, IEEE Trans. Neural Networks 5(3) (1994).

  2. M. Y. Chen D. A. Linkensm (2001) ArticleTitleA systematic neuro-fuzzy modeling framework with application to material property prediction IEEE Trans. Syst. Man Cybern. B 31 781–790 Occurrence Handle10.1109/3477.956047

    Article  Google Scholar 

  3. B. Egardt (1979) Stability of Adaptive Controllers, Lecture Notes in Control and Information Sciences Springer Berlin

    Google Scholar 

  4. S. Haykin (1994) Neural Networks – A Comprehensive Foundation Macmillan New York

    Google Scholar 

  5. Ioannou, P. A. and Sun, J.: Robust Adaptive Control, Upper Saddle River, NJ, Prentice-Hall, 1996.

  6. Z. P. Jiang Y. Wang (2001) ArticleTitleInput-to-State Stability for discrete-time nonlinear systems Automatica 37 IssueID2 857–869 Occurrence Handle2002j:93064

    MathSciNet  Google Scholar 

  7. L. Jin M. M. Gupta (1999) ArticleTitleStable dynamic backpropagation learning in recurrent neural networks IEEE Trans. Neural Networks 10 IssueID6 1321–1334

    Google Scholar 

  8. C. F. Juang (2002) ArticleTitleA TSK-type recurrent fuzzy networks for dynamic systems processing by neural network and genetic algorithms IEEE Trans. Fuzzy Syst. 10 IssueID2 155–170 Occurrence Handle88d:93026

    MathSciNet  Google Scholar 

  9. C. H. Lee C. C. Teng (2000) ArticleTitleIdentification and control of dynamic system using recurrent fuzzy neural networks IEEE Trans. Fuzzy Syst. 8 IssueID4 349–366

    Google Scholar 

  10. F. L. Lewis A. Yesildirek K. Liu (1996) ArticleTitleMultilayer neural-net robot controller with guaranteed tracking performance IEEE Trans. Neural Networks 7 IssueID2 388–399 Occurrence Handle10.1109/72.485674

    Article  Google Scholar 

  11. Y. G. Leu T. T. Lee W. Y. Wang (1999) ArticleTitleObserver-based adaptive fuzzy-neural control for unknown nonlinear dynamical systems IEEE Trans. Syst. Man Cybern. B 29 583–591

    Google Scholar 

  12. C. T. Lin G. Lee (1996) Neural fuzzy systems: A neural-fuzzy synergism to intelligent systems Prentice-Hall Inc. NJ

    Google Scholar 

  13. C. T. Lin (1995) ArticleTitleA neual fuzzy control system with structure and parameter learning Fuzzy Sets anc Syst. 70 183–212

    Google Scholar 

  14. E. H. Mamdani (1976) ArticleTitleApplication of fuzzy algorithms for control of simple dynamic plant IEE Proc. Control Theory Appl. 121 IssueID12 1585–1588

    Google Scholar 

  15. P. A. Mastorocostas J. B. Theocharis (2002) ArticleTitleA recurrent fuzzy-neural model for dynamic system identification IEEE Trans. Syst. Man Cybern. B 32 IssueID2 176–190 Occurrence Handle10.1109/3477.990874

    Article  Google Scholar 

  16. T. Takagi M. Sugeno (1985) ArticleTitleFuzzy identification of systems and its applications to modeling and control IEEE Trans. Syst. Man Cybern. 15 116–132

    Google Scholar 

  17. H. H. Tsai P. T. Yu (2000) ArticleTitleOn the optimal design of fuzzy neural networks with robust learning for function approximation IEEE Trans. Syst. Man Cybern. B 30 217–223

    Google Scholar 

  18. S. Wu M. J. Er (2000) ArticleTitleDynamic fuzzy neural networks- a novel approach to function approximation IEEE Trans. Syst. Man Cybern. B 30 358–364

    Google Scholar 

  19. C. H. Wang H. L. Liu C. T. Lin (2001) ArticleTitleDynamic optimal learning rates of a certain class of fuzzy neural networks and its applications with genetic algorithm IEEE Trans. Syst. Man Cybern. B 31 467–475 Occurrence Handle10.1109/3477.915344 Occurrence Handle2002k:62046

    Article  MathSciNet  Google Scholar 

  20. L. X. Wang (1994) Adaptive Fuzzy Systems and Control Englewood Cliffs NJ, Prentice-Hall

    Google Scholar 

  21. W. Y. Wang Y. G. Leu C. C. Hsu (2001) ArticleTitleRobust adaptive fuzzy-neural control of nonlinear dynamical systems using generalized projection updated law and variable structure controller IEEE Trans. Syst. Man Cybern. B 31 140–147 Occurrence Handle10.1109/3477.915344

    Article  Google Scholar 

  22. W. Yu X. Li (2001) ArticleTitleSome stability properties of dynamic neural networks IEEE Trans. Circuits Syst. 48 IssueID1 256–259

    Google Scholar 

  23. W. Yu X. Li (2001) ArticleTitleSome new results on system identification with dynamic neural networks IEEE Trans. Neural Networks 12 IssueID2 412–417

    Google Scholar 

  24. J. Zhang A. J. Morris (1999) ArticleTitleRecurrent neuro-fuzzy networks for nonlinear process modeling IEEE Trans. Neural Networks 10 IssueID2 313–326

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen Yu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, W. State-Space Recurrent Fuzzy Neural Networks for Nonlinear System Identification. Neural Process Lett 22, 391–404 (2005). https://doi.org/10.1007/s11063-005-1523-4

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11063-005-1523-4

Keywords

Navigation