Skip to main content
Log in

Circadian Rhythms: Physiological and Pathophysiological Aspects

  • REVIEWS
  • Published:
Neurophysiology Aims and scope

Physiological and pathophysiological aspects of the functioning of the cerebral system (hypothalamus and cerebral epiphysis) providing the circadian rhythm in humans are described with special attention to the involvement of disorders in this system in the pathogenesis of some neurodegenerative diseases and epilepsy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chronopharmacology for a Physician, Pharmacist, and Student, S. Dorogovoz, ed., Kharkiv, Titul, 2016, 373 p.

  2. S. Tordjman, S. Chokron, R. Delorme, et al., “Melatonin: Pharmacology, functions and therapeutic benefits,” Curr. Neuropharmacol., 15, No. 3, 434–443 (2017); https://doi.org/10.2174/1570159X14666161228122115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. J. Arendt, “Melatonin: characteristics, concerns, and prospects,” J. Biol. Rhythms., 20, No. 4, 291–303 (2005); https://doi.org/10.1177/0748730405277492.

    Article  CAS  PubMed  Google Scholar 

  4. J. Mareš, P. Stopka, K. Nohejlová, and R. Rokyta, “Oxidative stress induced by epileptic seizure and its attenuation by melatonin,” Physiol. Res., 62, Suppl. 1, S67–74 (2013); https://doi.org/10.33549/physiolres.932576.

    Article  PubMed  Google Scholar 

  5. R. Guzman-Marin, N. Suntsova, M. Methippara, et al., “Sleep deprivation suppresses neurogenesis in the adult hippocampus of rats,” Eur. J. Neurosci., 22, No. 8, 2111–2116 (2005); https://doi.org/10.1111/j.1460-9568.2005.04376.x.

    Article  PubMed  Google Scholar 

  6. L. Gan, M. R. Cookson, L. Petrucelli, and A. R. La Spada, “Convergent pathways of neurodegeneration: from genetics to mechanisms,” Nat. Neurosci., 21, No. 10, 1300–1309 (2018); https://doi.org/10.1038/s41593-018-0237-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. S. C. Stanford, “Recent developments in research of melatonin and its potential therapeutic applications,” Br. J. Pharmacol., 175, No. 16, 3187–3189 (2018); https://doi.org/10.1111/bph.14371.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. N. Zisapel, “New perspectives on the role of melatonin in human sleep, circadian rhythms and their regulation,” Br. J. Pharmacol., 175, No. 16, 3190–3199 (2018); https://doi.org/10.1111/bph.14116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. K. J. Reid, “Assessment of circadian rhythms,” Neurol. Clin., 37, No. 3, 505–526 (2019); https://doi.org/10.1016/j.ncl.2019.05.001.

    Article  PubMed  PubMed Central  Google Scholar 

  10. M. Gunata, H. Parlakpinar, and H. A. Acet, “Melatonin: A review of its potential functions and effects on neurological diseases,” Rev. Neurol. (Paris), 176, No. 3, 148–165 (2020); https://doi.org/10.1016/j.neurol.2019.07.025.

    Article  CAS  PubMed  Google Scholar 

  11. D. Acuña-Castroviejo, G. Escames, C. Venegas, et al., “Extrapineal melatonin: sources, regulation, and potential functions,” Cell. Mol. Life Sci., 71, No. 16, 2997–3025 (2014); https://doi.org/10.1007/s00018-014-1579-2.

    Article  CAS  PubMed  Google Scholar 

  12. B. Claustrat, J. Brun, and G. Chazot, “Basic physiology and pathophysiology of melatonin,” Sleep Med. Rev., 9, No. 1, 11–24 (2005); https://doi.org/10.1016/j.smrv.2004.08.001.

    Article  PubMed  Google Scholar 

  13. M. Masson-Pévet, “La mélatonine dans le système circadien [Melatonin in the circadian system; in French],” J. Soc. Biol., 201, No. 1, 77–83 (2007); https://doi.org/10.1051/jbio:2007009.

    Article  PubMed  Google Scholar 

  14. R. Jockers, P. Maurice, J. A. Boutin, and P. Delagrange, “Melatonin receptors, heterodimerization, signal transduction and binding sites: what’s new?” Br. J. Pharmacol., 154, No. 6, 1182–1195 (2008); https://doi.org/10.1038/bjp.2008.184.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. J. B. Zawilska, D. J. Skene, and J. Arendt, “Physiology and pharmacology of melatonin in relation to biological rhythms,” Pharmacol. Rep., 61 No. 3, 383–410 (2009); https://doi.org/10.1016/s1734-1140(09)70081-7.

    Article  CAS  PubMed  Google Scholar 

  16. C. Ekmekcioglu, “Melatonin receptors in humans: biological role and clinical relevance,” Biomed. Pharmacother., 60, No. 3, 97–108 (2006); https://doi.org/10.1016/j.biopha.2006.01.002.

    Article  CAS  PubMed  Google Scholar 

  17. V. Srinivasan, S. R. Pandi-Perumal, G. Jm. Maestroni, et al., “Role of melatonin in neurodegenerative diseases,” Neurotox. Res., 7, No. 4, 293–318 (2005); https://doi.org/10.1007/BF03033887.

  18. D. X. Tan, L. C. Manchester, and R. J. Reiter, “CSF generation by pineal gland results in a robust melatonin circadian rhythm in the third ventricle as an unique light/dark signal,” Med. Hypotheses, 86, 3–9 (2016); https://doi.org/10.1016/j.mehy.2015.11.018.

    Article  CAS  PubMed  Google Scholar 

  19. L. Tähkämö, T. Partonen, and A. K. Pesonen, “Systematic review of light exposure impact on human circadian rhythm,” Chronobiol. Int., 36, No. 2, 151–170 (2019); https://doi.org/10.1080/07420528.2018.1527773.

    Article  PubMed  Google Scholar 

  20. D. X. Tan, B. Xu, X. Zhou, and Reiter RJ, “Pineal calcification, melatonin production, aging, associated health consequences and rejuvenation of the pineal gland,” Molecules, 23, No. 2, 301 (2018); https://doi.org/10.3390/molecules23020301.

    Article  CAS  Google Scholar 

  21. D. Sapède and E. Cau, “The pineal gland from development to function,: Curr. Top. Dev. Biol., 106, 171–215 (2013); https://doi.org/10.1016/B978-0-12-416021-7.00005-5.

    Article  CAS  Google Scholar 

  22. M. M. Macchi and J. N. Bruce, “Human pineal physiology and functional significance of melatonin,” Front. Neuroendocrinol., 25, No. 3–4, 177–95 (2004); https://doi.org/10.1016/j.yfrne.2004.08.001. PMID: 15589268.

    Article  CAS  PubMed  Google Scholar 

  23. D. Slats, J. A. Klaassen, M. M. Verbeek, and S. Overim, “Reciprocal interactions between sleep, circadian rhythms, and Alzheimer’s disease: attention to the role of hypocretin and melatonin,” Ageing Res. Rev., 12, No. 1, 188–200 (2013); https://doi.org/10.1016/j.arr.2012.04.003.

    Article  CAS  PubMed  Google Scholar 

  24. J. Vriend and R. J. Reiter, “Melatonin feedback on clock genes: a theory involving the proteasome,” J. Pineal Res., 58, No. 1, 1–11 (2015); https://doi.org/10.1111/jpi.12189.

    Article  CAS  PubMed  Google Scholar 

  25. B. Claustrat and J. Leston, “Melatonin: Physiological effects in humans,” Neurochirurgie, 61, No. 2–3, 77–84 (2015); https://doi.org/10.1016/j.neuchi.2015.03.002.

    Article  CAS  PubMed  Google Scholar 

  26. H. Wu, S. Dunnett, Y. S. Ho, and R. C. C. Chang, “The role of sleep deprivation and circadian rhythm disruption as risk factors of Alzheimer’s disease,” Front Neuroendocrinol, 54, 100764. https://doi.org/10.1016/j.yfrne.2019.100764.

  27. D. Chen, T. Zhang, and T. H. Lee TH, “Cellular mechanisms of melatonin: insight from neurodegenerative diseases,” Biomolecules, 10, No. 8, 1158 (2020); https://doi.org/10.3390/biom10081158.

  28. S. R. Pandi-Perumal, A. S. BaHammam, G. M. Brown, et al., “Melatonin antioxidative defense: therapeutical implications for aging and neurodegenerative processes,” Neurotox. Res., 23, No. 3, 267–300 (2013); https://doi.org/10.1007/s12640-012-9337-4.

    Article  CAS  PubMed  Google Scholar 

  29. B. Stauch, L. C Johansson, and V. Cherezov, “Structural insights into melatonin receptors,” FEBS J., 287, No. 8. 1496–1510 (2020); https://doi.org/10.1111/febs.15128.

    Article  CAS  PubMed  Google Scholar 

  30. S. G. Bahna and L. P. Niles, “Epigenetic regulation of melatonin receptors in neuropsychiatric disorders,” Br. J. Pharmacol., 175, No. 16, 3209–3219 (2018); https://doi.org/10.1111/bph.14058.

    Article  CAS  PubMed  Google Scholar 

  31. Y. Meng, Z. Tao, S. Zhou, et al., “Research hot spots and trends on melatonin from 2000 to 2019,” Front. Endocrinol. (Lausanne), 12, 753923 (2021) https://doi.org/10.3389/fendo.2021.753923.

  32. F. Luo, A. F. Sandhu, W. Rungratanawanich, et al., “Melatonin and Autophagy in Aging-Related Neurodegenerative Diseases,” Int. J. Mol. Sci., 21, No. 19, 7174 (2020) https://doi.org/10.3390/ijms21197174.

  33. Z. Asefy, A. Khusro, S. Mammadova, “Melatonin hormone as a therapeutic weapon against neurodegenerative diseases,” Cell. Mol. Biol. (Noisy-legrand), 67, No. 3, 99–106 (2021); https://doi.org/10.14715/cmb/2021.67.3.13.

  34. P. Wongprayoon and P. Govitrapong, “Melatonin as a mitochondrial protector in neurodegenerative diseases,” Cell Mol Life Sci., 74, No. 21, 3999–4014 (2017); https://doi.org/10.1007/s00018-017-2614-x.

    Article  CAS  PubMed  Google Scholar 

  35. L. M. Trotti and E. G. Karroum, “Melatonin for Sleep Disorders in Patients with Neurodegenerative Diseases,” Curr. Neurol. Neurosci. Rep., 16, No. 7, 63 (2016); https://doi.org/10.1007/s11910-016-0664-3.

  36. X. Wang, “The antiapoptotic activity of melatonin in neurodegenerative diseases,” CNS. Neurosci. Ther., 15, No. 4, 345–357 (2009); https://doi.org/10.1111/j.1755-5949.2009.00105.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Y. H. Wu and D. F. Swaab, “The human pineal gland and melatonin in aging and Alzheimer’s disease,” J. Pineal Res., 38, No. 3, 145–152 (2005); https://doi.org/10.1111/j.1600-079X.2004.00196.x.

    Article  CAS  PubMed  Google Scholar 

  38. R. Malberg, D. Kunz, I. Sutei, et al., “Melatonin treatment of disturbed circadian rhythms and sunsets in Alzheimer’s disease: an open pilot study using actigraphy,” J. Clin. Psychopharmacology., 24, No. 4, 456–459 (2004); https://doi.org/10.1097/01.jcp.0000132443.12607.fd.

    Article  Google Scholar 

  39. W. Dauer and S. Przedborski, “Parkinson’s disease: mechanisms and models,” Neuron, 39, No. 6, 889–909 (2003); https://doi.org/10.1016/S0896-6273(03)00568-3.

    Article  CAS  PubMed  Google Scholar 

  40. N. K. Singhal, G. Srivastava, D. R. Patel, et al., “Melatonin or silymarin reduces maneb- and paraquatinduced Parkinson’s disease phenotype in the mouse,” J. Pineal Res., 50, No. 2, 97–109 (2011); https://doi.org/10.1111/j.1600-079X.2010.00819.x.

    Article  CAS  PubMed  Google Scholar 

  41. G. Patky, Y. S. Lau, “Melatonin protects against neurobehavioral and mitochondrial disorders in a mouse model of chronic Parkinson’s disease,” Pharmacol. Biochem. Behav., 99, No. 4, 704–711 (2011); https://doi.org/10.1016/j.pbb.2011.06.026

    Article  CAS  Google Scholar 

  42. A. Montaruli, L. Castelli, A. Mulè, “Biological rhythm and chronotype: new perspectives in health,” Biomolecules, 11, No. 4, 487 (2021); https://doi.org/10.3390/biom11040487.

    Article  CAS  Google Scholar 

  43. I. Bin-Jaliah and H. F. Sakr, “Melatonin ameliorates brain oxidative stress and upregulates senescence marker protein-30 and osteopontin in a rat model of vascular dementia,” Physiol Int., 105, No. 1, 38–52 (2018); https://doi.org/10.1556/2060.105.2018.1.1.

    Article  CAS  PubMed  Google Scholar 

  44. T. Ali, H. Badshah, T. H. Kim, and M. O. Kim, “Melatonin attenuates d-galactose-induced memory impairment, neuroinflammation, and neurodegeneration through the rage/nf-k b/jnk signaling pathway in a mouse model of aging,” J. Pineal Res., 58, No. 1, 71–85 (2015); https://doi.org/10.1111/jpi.12194.

    Article  CAS  PubMed  Google Scholar 

  45. Z. Vasileva, “Melatonin and epilepsy,” Folia Med. (Plovdiv)., 63, No. 6, 827–833 (2021); https://doi.org/10.3897/folmed.63.e58637.

    Article  CAS  PubMed  Google Scholar 

  46. A. Dominguez-Rodriguez, P. Abreu-Gonzalez, J. J. Sanchez-Sanchez, et al., “Melatonin and circadian biology in human cardiovascular disease,” J. Pineal Res., 49, No. 1, 14–22 (2010); https://doi.org/10.1111/j.1600-079X.2010.00773.x.

    Article  CAS  PubMed  Google Scholar 

  47. R. Hardeland, “Melatonin and circadian oscillators in aging--a dynamic approach to the multiply connected players,” Interdiscip. Top. Gerontol., 40, 128–40 (2015); https://doi.org/10.1159/000364975.

    Article  PubMed  Google Scholar 

  48. T. L. Spires-Jones and B. T. Hyman, “Intersection of beta-amyloid and tau at synapses in Alzheimer’s disease,” Neuron., 82, No. 4, 756–771 (2014); https://doi.org/10.1016/j.neuron.2014.05.00414.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. T. Kaur and B. C. Shyu, “Melatonin: A new-generation therapy for reducing chronic pain and improving sleep disorder-related pain, Adv. Exp. Med. Biol., 1099, 229–251 (2018); https://doi.org/10.1007/978-981-13-1756-9_19.

    Article  CAS  PubMed  Google Scholar 

  50. J. Hardy, D. J. Selkoe, “The amyloid hypothesis of Alzheimer’s disease: progress and challenges on the path to therapy,” Science, 297, No. 5580, 353–356 (2002); https://doi.org/10.1126/science.1072994.

    Article  CAS  PubMed  Google Scholar 

  51. Y. Saeed and S. M. Abbott, “Circadian disruption associated with Alzheimer’s disease,” Curr. Neurol. Neurosci. Rep., 17, No. 4, 29 (2017); https://doi.org/10.1007/s11910-017-0745-y.

  52. I. Soreca, “Circadian rhythms and sleep in bipolar disorder: implications for pathophysiology and treatment,” Curr. Opin. Psychiatry., 27, No. 6, 467–471 (2014); https://doi.org/10.1097/YCO.0000000000000108.

    Article  PubMed  Google Scholar 

  53. Y. Xi, M. Wang, W. Zhang, et al., “Neuronal damage, central cholinergic dysfunction, and oxidative damage correlate with cognitive deficits in rats with chronic cerebral hypoperfusion,” Neurobiol. Learn. Mem., 109, 7–19 (2014); https://doi.org/10.1016/j.nlm.2013.11.016.

    Article  CAS  PubMed  Google Scholar 

  54. L. Lanfumey, R. Mongeau, and M. Hamon, “Biological rhythms and melatonin in mood disorders and their treatments,” Pharmacol. Ther., 138, 2, 176–184 (2013); https://doi.org/10.1016/j.pharmthera.2013.01.005.

    Article  CAS  PubMed  Google Scholar 

  55. V. Milhiet, B. Etain, C. Boudebesse, ans F. Bellivier, “Circadian biomarkers, circadian genes and bipolar disorders,” J. Physiol. Paris., 105, No. 4–6, 183–189 (2011); https://doi.org/10.1016/j.jphysparis.2011.07.002.

  56. A. L. Colin-Gonzalez, G. Aguilera, I. N. Serratos, et al., “On the relationship between the light/dark cycle, melatonin and oxidative stress,” Curr. Pharm. Des., 21, No. 24, 3477–3488 (2015); https://doi.org/10.2174/1381612821666150706110940.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. M. Seredyns’ka.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Drogovoz, S.M., Seredyns’ka, N.M., Shtroblya, A.L. et al. Circadian Rhythms: Physiological and Pathophysiological Aspects. Neurophysiology (2024). https://doi.org/10.1007/s11062-024-09949-3

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1007/s11062-024-09949-3

Keywords

Navigation