Skip to main content

Effects of Citicoline on Structural/Functional Consequences of Focal Ischemia of the Rat Brain

Effects of citicoline on the volume of ischemically damaged cerebral tissue, dynamics of neurological deficiency, and indices of neurobehavioral tests were examined in rats with experimental transient focal cerebral ischemia induced by 60-min-long occlusion of the middle cerebral artery (MCA). Citicoline was administered immediately after beginning of reperfusion, and introductions were repeated for seven days. It was found that, on the 7th day after ischemia/reperfusion, the volume of the ischemic infarction (significantly damaged cerebral tissue) in rats with no citicoline treatment was, on average, 159.6±20.5 mm3, while in citicoline-treated rats the respective value was 86.5±10.8 mm3 (P < 0.01). In control untreated “infarction” rats, indices of the neurological deficiency demonstrated a very weak improvement within the observation period (5.9±1.0; 5.6±0.5, and 5.0±1.0 points according to the McGraw scale on the 1st, 3rd, and 7th days, respectively). Treatment with citicoline provided smaller intensities of the neurological deficiency throughout the period of observation (4.4±0.5; 3.5±1.1, and 1.9±0.5 points, respectively). The open-field and beam-walk tests demonstrated the positive effects of citicoline on locomotor and orientational/research activities of the animals and their emotional state; the state of their motor and vestibular sphere was improved. Thus, citicoline, when introduced for seven days after reperfusion, positively affects the recovery of nerve tissue and the functional state of cerebral neurons within the ischemic penumbra.

This is a preview of subscription content, access via your institution.

References

  1. G. B. Rajah and Y. Ding, “Experimental neuroprotection in ischemic stroke: a concise review,” Neurosurg. Focus, 42, No. 4, E2 (2017), https://doi.org/10.3171/2017.1.FOCUS16497.

  2. C. R. Cassella and A. Jagoda, “Ischemic stroke: Advances in diagnosis and management,” Emerg. Med. Clin. North. Am., 35, No. 4, 911–930 (2017), https://doi.org/10.1016/j.emc.2017.07.007.

    Article  PubMed  Google Scholar 

  3. G. G. Skibo, T. M. Kovalenko, I. V. Lushnikova, et al., Experimental Ischemia of the Brain, Naukova Dumka, Kyiv (2016).

    Google Scholar 

  4. Ya. Yaо, L. Chen, J. Xiao, et al., “Chrysin protects against focal cerebral ischemia/reperfusion injury in mice through attenuation of oxidative stress and inflammation,” Int. J. Mol. Sci., 15, No. 11, 20913–20926 (2014), https://doi.org/10.3390/ijms151120913.

    CAS  Article  Google Scholar 

  5. J. Koizumi, Y. Yoshid, T. Nakazama, and G. Ooneda, “Experimental studies of ischemic brain edema: 1. A new experimental model of cerebral embolism in rats in which recirculation can be introduced in the ischemic area,” Jpn. J. Stroke, 8, No. 1, 1-8 (1986), https://doi.org/10.3995/jstroke.8.1.

    Article  Google Scholar 

  6. J. Chen, Z. C. Xu, X. M. Xu, and J. H. Zhang, Animal Models of Acute Neurological Injuries, Totowa, New York (2009).

    Book  Google Scholar 

  7. J. F. Toole, Cerebrovascular Disorders [Russian translation], E. I. Guseva and A. B. Geht, eds., GEOTARMedia, Mpscow (2007).

  8. R. A. G. Patel and P. W. McMullen, “Neuroprotection in the treatment of acute ischemic stroke,” Prog. Cardiovasc. Dis., 59, No. 6, 542–548 (2017), https://doi.org/10.1016/j.pcad.2017.04.005.

    Article  PubMed  Google Scholar 

  9. I. L. G-Coviella and R. J. Wurtman, “Enhancement by cytidine of membrane phospholipid synthesis,” J. Neurochem., 59, No. 1, 338–343 (1992), https://doi.org/10.1111/j.1471-4159.1992.tb08909.x.

  10. J. Astrup, “Energy-requiring cell functions in the ischemic brain. Their critical supply and possible inhibition in protective therapy,” J. Neurosurg., 56, No. 4, 482–497 (1982), https://doi.org/10.3171/jns.1982.56.4.0482.

    CAS  Article  PubMed  Google Scholar 

  11. A. E. Hillis and J. C. Baron, “Editorial: the ischemic penumbra: still the target for stroke therapies?” Front. Neurol., 6, 85 (2015), https://doi.org/10.3389/fneur.2015.00085.

    Article  PubMed  PubMed Central  Google Scholar 

  12. K. Diederich, K. Frauenknecht, J. Minnerup, et al., “Citicoline enhances neuroregenerative processes after experimental stroke in rats,” Stroke, 43, No. 7, 1931–1940 (2012), https://doi.org/10.1161/STROKEAHA.112.654806.

    CAS  Article  PubMed  Google Scholar 

  13. E. P. Kennedy and S. B. Weiss, “The function of cytidine coenzymes in the biosynthesis of phospholipids,” J. Biol. Chem., 222, No. 1, 193–214 (1956).

    CAS  Article  PubMed  Google Scholar 

  14. W. M. Clark, “Efficacy of citicoline as an acute stroke treatment,” Expert Opin. Pharmacother., 10, No. 5, 839–846 (2009), https://doi.org/10.1517/17460440902835475.

    CAS  Article  PubMed  Google Scholar 

  15. R. M. Adibhatla and J. F. Hatcher, “Citicoline decreases phospholipase A2 stimulation and hydroxyl radical generation in transient cerebral ischemia,” J. Neurosci. Res., 73, No. 3, 308–315 (2003), doi: https://doi.org/10.1002/jnr.10672.

    CAS  Article  PubMed  Google Scholar 

  16. O. Hurtado, M. A. Moro, A. Cárdenas, , et al., “Neuroprotection afforded by prior citicoline administration in experimental brain ischemia: Effects on glutamate transport,” Neurobiol. Dis., 18, No. 2, 336–345 (2005).

    CAS  Article  PubMed  Google Scholar 

  17. W. R. Schabitz, J. Weber, K. Takano, et al., “The effects of prolonged treatment with citicoline in temporary experimental focal ischemia,” J. Neurol. Sci., 138, No. 1–2, 21–25 (1996), https://doi.org/10.1016/0022-510x(95)00341-x.

    CAS  Article  PubMed  Google Scholar 

  18. O. Hurtado, J. M. Pradillo, D. Fernández-López, et al, “Delayed post-ischemic administration of CDP-choline increases EAAT2 association to lipid rafts and affords neuroprotection in experimental stroke,” Neurobiol. Dis., 29, No. 1, 123–131 (2008), https://doi.org/10.1016/j.nbd.2007.08.004.

    CAS  Article  PubMed  Google Scholar 

  19. E. Z. Longa, P. R. Weinstein, S. Carlson, and R. Cummins, “Reversible middle cerebral artery occlusion without craniotomy in rats,” Stroke, 20, No. 1, 84–91 (1989), https://doi.org/10.1161/01.str.20.1.84.

    CAS  Article  PubMed  Google Scholar 

  20. T. Chiang, R. O. Messing, and W.-H. Chou, “Mouse model of middle cerebral artery occlusion,” J. Vis. Exp., No. 48, 2761 (2011), https://doi.org/10.3791/2761.

    Article  Google Scholar 

  21. C. N. Joshi, S. K. Jain, and P. S R. Murthy, “An optimized triphenyltetrazolium chloride method for identification of cerebral infarcts,” Brain Res. Brain Res. Protoc., 13, No. 1, 11–17 (2004), https://doi.org/10.1016/j.brainresprot.2003.12.001.

    CAS  Article  PubMed  Google Scholar 

  22. O. I Savchyuk and G. G. Skibo, “Modeling of ischemic insult in rats within different periods of reperfusion,” Galytsk. Likar. Vistn., 20, No. 1, 75–77 (2013).

    Google Scholar 

  23. C. P. McGrаw, “Experimental cerebral infarction effects of pentobarbital in Mongolian gerbils,” Arch. Neurol., 34, No. 6, 334–336 (1977), https://doi.org/10.1001/archneur.1977.00500180028006.

    Article  Google Scholar 

  24. J. Bureš, O. Burešová, and J. P. Huston, Techniques and Basic Experiments for the Study of Brain and Behavior [Russian translation], Vysshaya Shkola, Moscow (1991).

  25. Yu. T. Salyga, “Behavior of rats intoxicated by chlorpyrifos in the open-field test,” Tavrych. Med. Biol. Vistn., 15, No. 4, 332–335 (2012).

    Google Scholar 

  26. V. W. K. Tung, T. J. Burton, E. Dababneh, et al., “Behavioral assessment of the aging mouse vestibular system,” J. Vis. Exp., No. 89, 51605 (2014), https://doi.org/10.3791/51605.

    Article  Google Scholar 

  27. R. J. Carter, J. Morton, and S. B. Dunnett, “Motor coordination and balance in rodents,” Curr. Protoc. Neurosci., Chapter 8, Unit 8.12 (2001), https://doi.org/10.1002/0471142301.ns0812s15.

  28. S. L. Sell., K. Johnon., D. S. DeWitt, and D. S. Prough, “Persistent behavioral deficits in rats following parasagittal fluid percussion injury,” J. Neurotrauma, 34, No. 5, 1086–1096 (2017), https://doi.org/10.1089/neu.2016.4616.

    Article  PubMed  Google Scholar 

  29. N. W. Manning, B. C. V. Campbell, T. J. Oxley, and R. Chapot, “Acute ischemic stroke: time, penumbra, and reperfusion,” Stroke, 45, No. 2, 640–644 (2014), https://doi.org/10.1161/STROKEAHA.113.003798.

    Article  PubMed  Google Scholar 

  30. J. N. Crawley, What’s Wrong with My Mouse? Behavioral Phenotyping of Transgenic and Knockout Mice, 2nd ed., Wiley (2007).

  31. M. Gutiérrez-Fernández, B. Rodríguez-Frutos, B. Fuentes, et al., “CDP-choline treatment induces brain plasticity markers expression in experimental animal stroke,” Neurochem. Int., 60, No. 3, 310–317 (2012), https://doi.org/10.1016/j.neuint.2011.12.015.

    CAS  Article  PubMed  Google Scholar 

  32. P. Grieb, “Neuroprotective properties of citicoline: facts, doubts and unresolved issues,” CNS Drugs, 28, No. 3, 185–193 (2014), https://doi.org/10.1007/s40263-014-0144-8.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. P. Mankivska.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mankivska, O.P., Chaika, N.V. & Skibo, G.G. Effects of Citicoline on Structural/Functional Consequences of Focal Ischemia of the Rat Brain. Neurophysiology 53, 78–87 (2022). https://doi.org/10.1007/s11062-022-09918-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11062-022-09918-8

Keywords

  • focal cerebral ischemia/reperfusion
  • cerebral infarction
  • citicoline
  • infarction volume
  • neurological deficiency scale
  • behavioral tests
  • rat