Skip to main content

Regulation and Ethics of Transcranial Electrical Stimulation: A General View

Transcranial application of low-intensity electrical stimuli is a non-invasive brain stimulation procedure, which allows one to alter the excitability of cortical cells in both humans and animals. There is a broad consensus regarding the safety of this approach in humans, and different versions and protocols of this technique have been used in basic research and clinical studies for years. In this review, we aim to provide updated information on regulatory and ethical issues concerning the use of different versions of transcranial electrical stimulation (tES). This information may be critical due to its implications on the welfare and health of patients. Although tES is a safe and effective method with potential clinical and research utilities, the legal regulation criteria concerning the use different versions of tES are of critical relevance due to implications of brain stimulation for human health and well-being. Recent publications that review and describe all regulatory and safety aspects regarding the use of tES offer a practical vision about the most up-to-date information in this field and more relevant ethical implications.

This is a preview of subscription content, access via your institution.


  1. 1.

    M. A. Nitsche, D. Liebetanz, A. Antal, et al., “Modulation of cortical excitability by weak direct current stimulation – technical, safety and functional aspects,” Suppl. Clin. Neurophysiol., 56, 255–276 (2003).

    PubMed  Article  Google Scholar 

  2. 2.

    M. A. Nitsche and W. Paulus, “Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation,” J. Physiol., 527, No. 3, 633–639 (2000).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  3. 3.

    M. A. Nitsche and W. Paulus, “Sustained excitability elevations induced by transcranial DC motor cortex stimulation in humans,” Neurology, 57, No. 10, 1899– 1901 (2001).

    CAS  PubMed  Article  Google Scholar 

  4. 4.

    M. A. Nitsche and W. Paulus, “Transcranial direct current stimulation – Update 2011,” Restor. Neurol. Neurosci., 29, No. 6, 463–492 (2011).

    PubMed  Google Scholar 

  5. 5.

    M. A. Nitsche, A. Seeber, K. Frommann, et al., “Modulating parameters of excitability during and after transcranial direct current stimulation of the human motor cortex,” J. Physiol., 568, No. 1, 291-303 (2005).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  6. 6.

    Y. Huang, A. Datta, M. Bikson, and L. C. Parra, “Realistic volumetric-approach to simulate transcranial electric stimulation—ROAST—a fully automated opensource pipeline,” J. Neural Eng., 16, No. 5, 056006 (2019).

    PubMed  PubMed Central  Article  Google Scholar 

  7. 7.

    J. Giordano, M. Bikson, E. S. Kappenman, et al., “Mechanisms and effects of transcranial direct current stimulation,” Dose Response, 15, No. 1, 1559325816685467 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  8. 8.

    M. Argyelan, L. Oltedal, Z. De Deng, et al., “Electric field causes volumetric changes in the human brain,” Elife, 8, e49115 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  9. 9.

    A. P. Mourdoukoutas, D. Q. Truong, D. K. Adair, et al., “High-resolution multi-scale computational model for non-invasive cervical vagus nerve stimulation,” Neuromodulation, 21, No. 3, 261–268 (2018).

    PubMed  Article  Google Scholar 

  10. 10.

    P. Y. Chhatbar, S. A. Kautz, I. Takacs, et al., “Evidence of transcranial direct current stimulation-generated electric fields at subthalamic level in human brain in vivo,” Brain Stimul., 11, No 4., 727–733 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  11. 11.

    K. A. Caulfield, B. W. Badran, W. H. DeVries, et al., “Transcranial electrical stimulation motor threshold combined with reverse-calculated electric field modeling can determine individualized tDCS dosage,” BioRxiv, doi: (2019).

  12. 12.

    K. A. Caulfield, B. W. Badran, W. H. DeVries, et al., “Transcranial electrical stimulation motor threshold can estimate individualized tDCS dosage from reversecalculation electric-field modeling,” Brain Stimul., 13, No. 4, 961–969 (2020).

    PubMed  Article  Google Scholar 

  13. 13.

    F. Fregni, M. A. Nitsche, C. K. Loo, et al., “Regulatory considerations for the clinical and research use of transcranial direct current stimulation (tDCS): Review and recommendations from an expert panel,” Clin. Res. Regul. Aff., 32, No. 1, 22–35 (2015).

    CAS  PubMed  Article  Google Scholar 

  14. 14.

    A. J. Woods, A. Antal, M. Bikson, et al., “A technical guide to tDCS, and related non-invasive brain stimulation tools,” Clin. Neurophysiol., 127, No. 2, 1031–1048 (2016).

    CAS  PubMed  Article  Google Scholar 

  15. 15.

    P. M. Rossini, D. Burke, R. Chen, et al., “Non-invasive electrical and magnetic stimulation of the brain, spinal cord, roots and peripheral nerves: Basic principles and procedures for routine clinical and research application: An updated report from an I.F.C.N. Committee,” Clin. Neurophysiol., 126, No. 6, 1071–1107 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  16. 16.

    A. D. Boes, M. S. Kelly, N. T. Trapp, et al., “Noninvasive brain stimulation: challenges and opportunities for a new clinical specialty,” J. Neuropsychiatry Clin. Neurosci., 30, No. 3, 173–179 (2018).

    PubMed  Article  Google Scholar 

  17. 17.

    S. N. Kukke, C. C. Brewer, C. Zalewski, et al., “Hearing safety from single- and double-pulse transcranial magnetic stimulation in children and young adults,” J. Clin. Neurophysiol., 34, No. 4, 340–347 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  18. 18.

    R. Polanía, M. A. Nitsche, and C. C. Ruff, “Studying and modifying brain function with non-invasive brain stimulation,”. Nat. Neurosci., 21, No. 2, 174–187 (2018).

    PubMed  Article  Google Scholar 

  19. 19.

    W. Paulus, J. Classen, L. G. Cohen, et al., “State of the art: Pharmacologic effects on cortical excitability measures tested by transcranial magnetic stimulation,” Brain Stimul., 1, No. 3, 151–163 (2008).

    PubMed  Article  Google Scholar 

  20. 20.

    A. Antal, I. Alekseichuk, M. Bikson, et al., “Low intensity transcranial electric stimulation: Safety, ethical, legal regulatory and application guidelines,” Clin. Neurophysiol., 128, No. 9, 1774–1809 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  21. 21.

    A. Wexler, “The practices of do-it-yourself brain stimulation: Implications for ethical considerations and regulatory proposals,” J. Med. Ethics, 42, No. 4, 211–215 (2016).

    PubMed  Article  Google Scholar 

  22. 22.

    A. Wexler, “A pragmatic analysis of the regulation of consumer transcranial direct current stimulation (tDCS) devices in the United States,” J. Law Biosci., 2, No. 3, 669–696 (2015).

    PubMed  PubMed Central  Google Scholar 

  23. 23.

    H. Maslen, T. Douglas, R. Cohen Kadosh, et al., “The regulation of cognitive enhancement devices: extending the medical model,” J. Law Biosci. 1, No. 1, 68–93 (2014).

    PubMed  PubMed Central  Article  Google Scholar 

  24. 24.

    M. Bikson, B. Paneri, A. Mourdoukoutas, et al., “Limited output transcranial electrical stimulation (LOTES-2017): Engineering principles, regulatory statutes, and industry standards for wellness, over-the-counter, or prescription devices with low risk,” Brain Stimul., 11, No. 1, 134–157 (2018).

    PubMed  Article  Google Scholar 

  25. 25.

    L. Borrione and A. R. Brunoni, “Primum non nocere or primum facere meliorem? Hacking the brain in the 21st century,” Trends Psychiatry Psychother., 39, No. 4, 232-238 (2017).

    PubMed  Article  Google Scholar 

  26. 26.

    A. Jwa, “Early adopters of the magical thinking cap: a study on do-it-yourself (DIY) transcranial direct current stimulation (tDCS) user community,” J. Law Biosci., 2, No. 2, 292–335 (2015).

    PubMed  PubMed Central  Article  Google Scholar 

  27. 27.

    N. S. Fitz and P. B. Reiner, “The challenge of crafting policy for do-it-yourself brain stimulation,” J. Med. Ethics, 41, No. 5, 410–412 (2015).

    PubMed  Article  Google Scholar 

  28. 28.

    A. Wexler, “Recurrent themes in the history of the home use of electrical stimulation: Transcranial direct current stimulation (tDCS) and the medical battery (1870–1920),” Brain Stimul. 10, No. 2, 187–195 (2017).

    PubMed  Article  Google Scholar 

  29. 29.

    A. Wexler, “The social context of “Do-It-Yourself” brain stimulation: neurohackers, biohackers, and lifehackers,” Front. Hum. Neurosci., 11, 224 (2017).

  30. 30.

    D. M. M. Borducchi, J. S. Gomes, H. Akiba, et al., “Transcranial direct current stimulation effects on athletes’ cognitive performance: An exploratory proof of concept trial,” Front. Psychiatry, 7, 183 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  31. 31.

    V. Dubljević, V. Saigle, and E. Racine, “The rising tide of tDCS in the media and academic literature,” Neuron, 82, No. 4, 731–736 (2014).

    PubMed  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to A. Molero-Chamizo.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Molero-Chamizo, A., Sánchez, M.Á.S., Riquel, R.M. et al. Regulation and Ethics of Transcranial Electrical Stimulation: A General View. Neurophysiology 52, 234–238 (2020).

Download citation


  • non-invasive brain stimulation
  • transcranial electrical stimulation
  • ethics
  • health
  • safety
  • legal regulation