Skip to main content
Log in

Neuroprotective and Antiapoptotic Effects of Allopregnanolone and Curcumin on Arsenic-Induced Toxicity in SH-SY5Y Dopaminergic Human Neuroblastoma Cells

  • Published:
Neurophysiology Aims and scope

Parkinson’s disease (PD) is a widespread neurological disorder mainly characterized by gradual death of dopaminergic neurons in the basal ganglia. In our study, we compared the effects of curcumin (Curc) as a herbal medicine and those of allopregnanolone (Allo) as a synthetic drug on arsenic(Ars-)-induced toxicity in an SH-SY5Y in vitro model of PD. Cell survival was determined by the MTT assay; intracellular reactive oxygen species (ROSs) and the mitochondrial potential were assessed by a fluorescence probe. Furthermore, immunoblotting was applied to determine the biomarkers of cells apoptosis. As was found, Ars decreases the cell survival rate and enhances the loss of the mitochondrial membrane potential. The mean contents of intracellular ROSs, amount of c-Fos, and caspase-3 ratio significantly increased in Ars-exposed cells. Pretreatment of cells with Allo (250 μM) and Curc (5 μM) significantly decreased mean levels of these factors in Ars-treated cells. Although Curc showed a greater protective effect than Allo, the respective difference was statistically insignificant. The neuroprotective effects of Allo and Curc are probably related to their antioxidant and anti-apoptotic properties, which suggests their therapeutic potential in PD treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Hirtz, D. J. Thurman, K. Gwinn-Hardy, et al., “How common are the “common” neurologic disorders?” Neurology, 68, No. 5, 326–337 (2007).

    CAS  PubMed  Google Scholar 

  2. C. A. Haaxma, B. R. Bloem, G. F. Borm, et al., “Gender differences in Parkinson’s disease,” J. Neurol. Neurosurg. Psychiatry, 78, No. 8, 819–824 (2007).

    PubMed  Google Scholar 

  3. W. Dauer and S. Przedborski, “Parkinson’s disease: mechanisms and models,” Neuron, 39, No. 6, 889–909 (2003).

    CAS  PubMed  Google Scholar 

  4. J. Blesa, I. Trigo-Damas, A. Quiroga-Varela, et al., “Oxidative stress and Parkinson’s disease,” Front. Neuroanat., 9, 91 (2015).

  5. K. Venderova and D.S. Park, “Programmed cell death in Parkinson’s disease,” Cold. Spring. Harb. Perspect. Med., 2, No. 8, a009365 (2012).

    PubMed  PubMed Central  Google Scholar 

  6. H. E. Moon and S. H. Paek, “Mitochondrial dysfunction in Parkinson’s disease,” Exp. Neurobiol., 24, No. 2, 103– 116 (2015).

    PubMed  PubMed Central  Google Scholar 

  7. H. Xicoy, B. Wieringa, and G. J. Martens, “The SH-SY5Y cell line in Parkinson’s disease research: a systematic review,” Mol. Neurodegener., 12, No. 1, 10 (2017).

    PubMed  PubMed Central  Google Scholar 

  8. S. C.Grund, K. Hanusch, and H. U. Wolf, “Arsenic and arsenic compounds” in Ullmann’s Encyclopedia of Industrial Chemistry, Wiley-VCH, Weinheim, doi:https://doi.org/10.1002/14356007.a03_113 (2008).

  9. D. G. Le Couteur, A. J. McLean, M. C. Taylor, et al., “Pesticides and Parkinson’s disease,” Biomed. Pharmacother., 53, No. 3, 122–130 (1999).

    PubMed  Google Scholar 

  10. L. G. Costa, G. Giordano, M. Guizzetti, and A. Vitalone, “Neurotoxicity of pesticides: A brief review,” Front. Biosci., 13, No. 4, 1240–1249 (2008).

    CAS  PubMed  Google Scholar 

  11. S. Shavali and D. A. Sens, “Synergistic neurotoxic effects of arsenic and dopamine in human dopaminergic neuroblastoma SH-SY5Y cells,” Toxicol. Sci., 102, No. 2, 254–261 (2008).

    CAS  PubMed  Google Scholar 

  12. M. D. Majewska, “Neurosteroids: Endogenous bimodal modulators of the GABAA receptor; mechanism of action and physiological significance,” Prog. Neurobiol., 38, No. 4, 379–395 (1992).

    CAS  PubMed  Google Scholar 

  13. D. S. Reddy, “Role of anticonvulsant and antiepileptogenic neurosteroids in the pathophysiology and treatment of epilepsy,” Front. Endocrinol. (Lausanne), 2, 38 (2011).

  14. I. Lejri, A. Grimmbc, M. Miesch, et al., “Allopregnanolone and its analog BR 297 rescue neuronal cells from oxidative stress-induced death through bioenergetic improvement,” Biochim. Biophys. Acta, 1863, No. 3, 631–642 (2017).

    CAS  Google Scholar 

  15. R. C. Melcangi, L. M. Garcia-Segura, and A. G. Mensah-Nyagan, “Neuroactive steroids: state of the art and new perspectives,” Cell. Mol. Life Sci., 65, No. 5, 777–797 (2008).

    CAS  PubMed  Google Scholar 

  16. C. M. Carver and D. S. Reddy, “Neurosteroid inter- actions with synaptic and extrasynaptic GABAA receptors: regulation of subunit plasticity, phasic and tonic inhibition, and neuronal network excitability,” Psychopharmacology (Berl.), 230, No. 2, 151–188 (2013).

    CAS  Google Scholar 

  17. C. A. Frye, C. J. Koonce, and A. A. Walf, “Novel receptor targets for production and action of allopregnanolone in the central nervous system: A focus on pregnane xenobiotic receptor,” Front. Cell. Neurosci., 8, 106 (2014).

  18. M. D. Majewska, N. L. Harrison, R. D. Schwartz, et al., “Steroid hormone metabolites are barbiturate-like modulators of the GABA receptor,” Science, 232, No. 4753, 1004–1007 (1986).

    CAS  PubMed  Google Scholar 

  19. J. M. Wang, R. W. Irwin, L. Liu, et al., “Regeneration in a degenerating brain: Potential of allopregnanolone as a neuroregenerative agent,” Curr. Alzheimer Res., 4, No. 5, 510–517 (2007).

    CAS  PubMed  Google Scholar 

  20. J. M. Wang, C. Singh, L. Liu, et al., “Allopregnanolone reverses neurogenic and cognitive deficits in mouse model of Alzheimer’s disease,” Proc. Natl. Acad. Sci. USA, 107, No. 14, 6498–503 (2010).

    CAS  PubMed  Google Scholar 

  21. X. Qian, H. Cao, Q. Ma , et al., “Allopregnanolone attenuates Aβ25-35-induced neurotoxicity in PC12 cells by reducing oxidative stress,” Int. J. Clin. Exp. Med., 8, No. 8, 13610–13615 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. A. Nezhadi, V. Sheibani , K. Esmaeilpour, et al., “Neurosteroid allopregnanolone attenuates cognitive dysfunctions in 6-OHDA-induced rat model of Parkinson’s disease,” Behav. Brain Res., 305, 258–264 (2016).

    CAS  PubMed  Google Scholar 

  23. A. Nezhadi, S. Esmaeili-Mahani V. Sheibani, et al., “Neurosteroid allopregnanolone attenuates motor disability and prevents the changes of neurexin 1 and postsynaptic density protein 95 expression in the striatum of 6-OHDA-induced rats’ model of Parkinson’s disease,” Biomed. Pharmacother., 88, 1188–1197 (2017).

    CAS  Google Scholar 

  24. A. Dey, and J. N. De, “Neuroprotective therapeutics from botanicals and phytochemicals against Huntington’s disease and related neurodegenerative disorders,” J. Herb. Med., 5, No. 1, 1–19 (2015).

    CAS  Google Scholar 

  25. D. Zielonka, E. A. Puch, and E. Modrzejewska-Zielonka, “Application of complementary and alternative medicine methods in Huntington’s disease,” Hygeia, 52, No. 2, 157–160 (2017).

    Google Scholar 

  26. M. D. da Rocha, F. P. D. Viegas, H. C. Campos, et al., “The role of natural products in the discovery of new drug candidates for the treatment of neurodegenerative disorders II: Alzheimer’s disease,” CNS Neurol. Disord. Drug Targets, 10, No. 2, 251–270 (2011).

    PubMed  Google Scholar 

  27. B. V. Manyam and J. R. Sánchez-Ramos, “Traditional and complementary therapies in Parkinson’s disease,” Adv. Neurol., 80, 565–574 (1999).

    CAS  PubMed  Google Scholar 

  28. T. H. Kim, K.-H. Cho, W.-S. Jung, and M. S. Lee, “Herbal medicines for Parkinson’s disease: a systematic review of randomized controlled trials,” PLoS One, 7, No 5, e35695 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. I. Chattopadhyay, K. Biswas, U. Bandyopadhyay, and R. K. Banerjee, “Turmeric and curcumin: Biological actions and medicinal applications,” Curr. Sci. (Bangalore), 87, No. 1, 44–53 (2004).

    CAS  Google Scholar 

  30. B. B. Aggarwal and B. Sung, “Pharmacological basis for the role of curcumin in chronic diseases: An age-old spice with modern targets,” Trends Pharmacol. Sci., 30, No. 2, 85–94 (2009).

    CAS  PubMed  Google Scholar 

  31. M. Tang and C. Taghibiglou, “The mechanisms of action of curcumin in Alzheimer’s disease,” J. Alzheimers Dis., 58, No. 4, 1003–1016 (2017).

    CAS  PubMed  Google Scholar 

  32. M. Qureshi, E. A. Al-Suhaimi, F. Wahid, et al., “Therapeutic potential of curcumin for multiple sclerosis,” Neurol. Sci., 39, No. 2, 207–214 (2018).

    PubMed  Google Scholar 

  33. G. P. Jahromi, H. Khodadadi, M. Fasihi-Ramandi, et al., “Neuroprotective and antiapoptotic effects of N-acetylcysteine and Crocus sativus aqueous extract on arsenic-induced neurotoxicity in SH-SY5Y human dopaminergic neuroblastoma cells,” Indian J. Pharm. Educ. Res., 53, No. 4, 695–702 (2019).

    CAS  Google Scholar 

  34. F. Denizot and R. Lang, “Rapid colorimetric assay for cell growth and survival: modifications to the tetrazolium dye procedure giving improved sensitivity and reliability,” J. Immunol. Methods, 89, No. 2, 271– 277 (1986).

    CAS  PubMed  Google Scholar 

  35. H. Pasban-Aliabadi, S. Esmaeili-Mahani, V. Sheibani, et al., “Inhibition of 6-hydroxydopamine-induced PC12 cell apoptosis by olive (Olea europaea L.) leaf extract is performed by its main component oleuropein,” Rejuvenation Res., 16, No. 2, 134–142 (2013).

    CAS  PubMed  Google Scholar 

  36. S. Eftekhar-Vaghefi, S. Esmaeili-Mahani, L. Elyasi, and M. Abbasnejad, “Involvement of mu opioid receptor signaling in the protective effect of opioid against 6-hydroxydopamine-induced SH-SY5Y human neuroblastoma cells apoptosis.” Basic Clin. Neurosci., 6, No. 3, 171–178 (2015).

    PubMed  PubMed Central  Google Scholar 

  37. A. H. Smith, C. Hopenhayn-Rich, M. N. Bates, et al., “Cancer risks from arsenic in drinking water,” Environ. Health Perspect., 97, 259–267 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. A. H. Smith et al., “Cancer risks from arsenic in drinking water: implications for drinking water standards,” in Arsenic Exposure and Health Effects III (1st Edition), Elsevier, pp. 191–199 (1999).

  39. K. Jomova, Z. Jenisova, M. Feszterova, et al., “Arsenic: toxicity, oxidative stress and human disease,” J. Appl. Toxicol., 31, No. 2, 95–107 (2011).

    CAS  PubMed  Google Scholar 

  40. W. H. Miller Jr., H. M. Schipper, J. S. Lee, et al., “Mechanisms of action of arsenic trioxide,” Cancer Res., 62, No. 14, 3893–3903 (2002).

  41. S. H. Woo, I.-C. Park, J. Park, H.-C. Lee, “Arsenic trioxide induces apoptosis through a reactive oxygen species-dependent pathway and loss of mitochondrial membrane potential in HeLa cells,” Int. J. Oncol., 21, No. 1, 57–63 (2002).

    CAS  PubMed  Google Scholar 

  42. Y. Akao, Y. Nakagawa, and K. Akiyama, “Arsenic trioxide induces apoptosis in neuroblastoma cell lines through the activation of caspase 3 in vitro,” FEBS Lett., 455, Nos. 1–2, 59–62 (1999).

    CAS  PubMed  Google Scholar 

  43. H. Hatcher, R. Planalp, J. Cho, et al., “Curcumin: from ancient medicine to current clinical trials,” Cell. Mol. Life Sci., 65, No. 11, 1631–1652 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. S. Tajbakhsh, K. Mohammadi, I. Deilami, et al., “Antibacterial activity of indium curcumin and indium diacetylcurcumin,” Afr. J. Biotechnol., 7, No. 21, 3832– 3835 (2008).

  45. R. C. Melcangi and G.C. Panzica, “Allopregnanolone: state of the art,” Prog. Neurobiol., 113, 1–5 (2014).

    CAS  PubMed  Google Scholar 

  46. O. Taleb, C. Patte-Mensah, L. Meyer, et al., “Evidence for effective structure-based neuromodulatory effects of new analogues of neurosteroid allopregnanolone,” J. Neuroendocrinol., 30, No. 2, doi: https://doi.org/10.1111/jne.12568. (2018).

  47. S. Zampieri, S. H. Mellon, T. D. Butters, et al., “Oxidative stress in NPC1 deficient cells: protective effect of allopregnanolone,” J. Cell. Mol. Med., 13, No. 9B, 3786–3796 (2009).

    PubMed  Google Scholar 

  48. S. Afrazi, S. Esmaeili-Mahani, V. Sheibani, et al., “Neurosteroid allopregnanolone attenuates high glucoseinduced apoptosis and prevents experimental diabetic neuropathic pain: in vitro and in vivo studies,” J. Steroid Biochem. Mol. Biol., 139, 98–103 (2014).

    CAS  PubMed  Google Scholar 

  49. N. R. Perron and J.L. Brumaghim, “A review of the antioxidant mechanisms of polyphenol compounds related to iron binding,” Cell. Biochem. Biophys., 53, No. 2, 75–100 (2009).

    CAS  PubMed  Google Scholar 

  50. Y. Jaisin, A. Thampithak, B. Meesarapee, et al., “Curcumin I protects the dopaminergic cell line SH-SY5Y from 6-hydroxydopamine-induced neurotoxicity through attenuation of p53-mediated apoptosis,” Neurosci. Lett., 489, No. 3, 192–196 (2011).

    CAS  PubMed  Google Scholar 

  51. K. F. Winklhofer and C. Haass, “Mitochondrial dysfunction in Parkinson’s disease,” Biochim. Biophys. Acta, 1802, No. 1, 29–44 (2010).

    CAS  PubMed  Google Scholar 

  52. A. Bose and M. F. Beal, “Mitochondrial dysfunction in Parkinson’s disease,” J. Neurochem., 139, Suppl. 1, 216– 231 (2016).

    CAS  PubMed  Google Scholar 

  53. A. Kaasik, D. Safiulina, A. Kalda, and A. Zharkovsky, “Dehydroepiandrosterone with other neurosteroids preserve neuronal mitochondria from calcium overload,” J. Steroid Biochem. Mol. Biol., 87, No. 1, 97–103 (2003).

    CAS  PubMed  Google Scholar 

  54. C. L. Robertson and M. Saraswati, “Progesterone protects mitochondrial function in a rat model of pediatric traumatic brain injury,” J. Bioenerg. Biomembr., 47, No. 1-2, 43–51 (2015).

    CAS  PubMed  Google Scholar 

  55. H. Ligeret, S. Barthelemy, R. Zini, et al., “Effects of curcumin and curcumin derivatives on mitochondrial permeability transition pore,” Free Radic. Biol. Med., 36, No. 7, 919–929 (2004).

    CAS  PubMed  Google Scholar 

  56. D. G. Herrera and H. A. Robertson, “Activation of c-Fos in the brain,” Prog. Neurobiol., 50, Nos. 2–3, 83–107 (1996).

    CAS  PubMed  Google Scholar 

  57. J. Lu, S. Moochhala, C. Kaur, and E. Ling, “Changes in apoptosis-related protein (p53, Bax, Bcl-2 and Fos) expression with DNA fragmentation in the central nervous system in rats after closed head injury,” Neurosci. Lett., 290, No. 2, 89–92 (2000).

    CAS  PubMed  Google Scholar 

  58. H. A. Robertson, M. R. Peterson, K. Murphy, and G. S. Robertson, “D1-dopamine receptor agonists selectively activate striatal c-fos independent of rotational behaviour,” Brain Res., 503, No. 2, 346–349 (1989).

    CAS  PubMed  Google Scholar 

  59. I. Charalampopoulos, E. Remboutsika, A. N. Margioris, A. Gravanis, “Neurosteroids as modulators of neurogenesis and neuronal survival,” Trends. Endocrinol. Metab., 19, No. 8, 300–307 (2008).

    CAS  PubMed  Google Scholar 

  60. F. M. Cutrer and M.A. Moskowitz, “The actions of valproate and neurosteroids in a model of trigeminal pain,” Headache J. Head Face Pain, 36, No. 10, 579– 585 (1996).

    CAS  Google Scholar 

  61. S. S. Kakar and D. Roy, Curcumin inhibits TPA induced expression of c-fos, c-jun and c-myc proto-oncogenes messenger RNAs in mouse skin,” Cancer Lett., 87, No. 1, 85–89 (1994).

    CAS  PubMed  Google Scholar 

  62. A. Hartmann, S. Hunot, P. P. Michel, et al., “Caspase-3: a vulnerability factor and final effector in apoptotic death of dopaminergic neurons in Parkinson’s disease,” Proc. Natl. Acad. Sci. USA, 97, No. 6, 2875–2880 (2000).

    CAS  PubMed  Google Scholar 

  63. N. Exner, A. K. Lutz, C. Haass, and K. F. Winklhofer, “Mitochondrial dysfunction in Parkinson’s disease: molecular mechanisms and pathophysiological consequences,” EMBO J., 31, No. 14, 3038–3062 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Y. L. Fan, H.-C. Li, W. Zhao, et al, “Curcumin attenuated bupivacaine-induced neurotoxicity in SH-SY5Y cells via activation of the Akt signaling pathway,” Neurochem. Res., 41, No. 9, 2425–2432 (2016).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to G. P. Jahromi or A. Shahriary.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khodadadi, H., Jahromi, G.P., Zaeinalifard, G. et al. Neuroprotective and Antiapoptotic Effects of Allopregnanolone and Curcumin on Arsenic-Induced Toxicity in SH-SY5Y Dopaminergic Human Neuroblastoma Cells. Neurophysiology 52, 124–133 (2020). https://doi.org/10.1007/s11062-020-09861-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11062-020-09861-6

Keywords

Navigation