Skip to main content
Log in

Formation of a Precise Behavioral Motor Response to an External Pain Stimulus Is Not Possible without a Subjective Experience of Pain

  • DISCUSSIONS
  • Published:
Neurophysiology Aims and scope

The formation of a structured behavioral motor response to an external painful (nociceptive) stimulus is performed in certain cerebral neuronal networks (NNs), and this is related to specific mental phenomena (experience of pain, mental pain images). We state that the description of the respective NNs (a biologically expedient pain neuromatrix) is impossible without taking into account mental pain-related phenomena. Structural and functional features of the respective NNs, responsible for the performance of pain-related behavior, are discussed. The specificities of functioning of definite synapses in the process of regulation of such behavior are also discussed. In fact, the proposed article deals with functional (as well as causal) relationships between objective and subjective processes providing the formation of novel information in the brain; this complex process is based on the integration of the earlier experience in the brain in the course of formation of a “competent” (expedient, structured by the above experience) motor act.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. J. Cox, J. Sheynin, Z. Shorer, et al., “Congenital insensitivity to pain: novel SCN9A missense and in-frame deletion mutations,” Hum. Mutat., 31, No. 9, E1670–E1686, doi: https://doi.org/10.1002/humu.21325 (2010).

    Article  CAS  PubMed  Google Scholar 

  2. J. J. Cox, F. Reimann, A. K. Nicholas, et al., “An SCN9A channelopathy causes congenital inability to experience pain,” Nature, 444, No. 7121, 894–848 (2006).

    Article  CAS  Google Scholar 

  3. O. V. Soloviov, “Neuronal networks responsible for genetic and acquired (ontogenetic) memory: Probable fundamental differences,” Neurophysiology, 47, No. 5, 419–431, doi:https://doi.org/10.1007/s11062-016-9550-5 (2015).

    Article  Google Scholar 

  4. Encyclopedic Dictionary on Cybernetics, Ukr. Sov. Entsiklop., Kyiv (1989).

  5. J. G. Nicholls, A. R. Martin, B. G. Wallace, and P. A. Fuchs, From Neuron to Brain [in Russian], Moscow (2003).

  6. C. Rovee and D. T. Rovee, “Conjugate reinforcement of infant exploratory behavior,” J. Exp. Child Psychol., 8, No. 1, 33–39 (1969).

    Article  CAS  Google Scholar 

  7. A. Vasylchenko, “Towards the logic of projective identification,” J. Appl. Logic, 13, No. 3, 197–214, doi:https://doi.org/10.1016/j.jal.2015.03.008 (2015).

    Article  Google Scholar 

  8. A. R. Damasio, The Feeling of What Happens, Harcourt Brace, New York, San Diego, London (1999).

    Google Scholar 

  9. N. D. Gordeyeva, Experimental Psychology of an Executive Action, Trivola, Moscow (1995).

    Google Scholar 

  10. R. Shadmehr and J. W.Krakauer, “Computational neuroanatomy of voluntary motor control,” in: The Cognitive Neurosciences, M. S. Gazzaniga (ed.), MIT Press, 587–597 (2009).

  11. G. Tononi, “Consciousness as integrated information: a provisional manifesto,” Biol. Bull., 215, No. 3, 216–242 (2008).

    Article  Google Scholar 

  12. M. A. Vince, “The intermittency of control movements and the psychological refractory period,” Br. J. Psychol. Gen. Sect.,38, Pt. 3, 149–157 (1948).

    Article  CAS  Google Scholar 

  13. J. Vance, “Action prevents error-predictive processing without active inference,” in: Philosophy and Predictive Processing, T. Metzinger and W. Wiese (Eds.), Frankfurt am Main: MIND Group. Article 25. (P. 14) (2017) doi: https://doi.org/10.15502/9783958573260

  14. M. Velliste, S. Perel, M. C. Spalding, et al., “Cortical control of a prosthetic arm for self-feeding,” Nature, 453, No. 7198, 1098–1101 (2008). doi:https://doi.org/10.1038/nature06996

    Article  CAS  PubMed  Google Scholar 

  15. M. M. Merzenich and W. M. Jenkins, “Cortical plasticity, learning, and learning dysfunction,” in: Maturational Windows and Adult Cortical Plasticity. SFI Studies in the Sciences of Complexity, B. Julesz and I. Kovbcs (eds.), Vol. 23, Addison-Wesley, Reading, MA (1995).

  16. J. Iglesias, J. Eriksson, F. Grize, et al., “Dynamics of pruning in simulated large-scale spiking neural networks,” Biosystems,79, Nos. 1–3, 11–20 (2005), doi:https://doi.org/10.1016/j.biosystems.2004.09.016

    Article  PubMed  Google Scholar 

  17. M. Medalla and H. Barbas, “Anterior cingulate synapses in prefrontal areas 10 and 46 suggest differential influence in cognitive control,” J. Neurosci., 30, No. 48, 16068–16081 (2010), doi: https://doi.org/10.1523/JNEUROSCI.1773-10.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. D. H.Hubel and T. N.Wiesel, “Brain mechanisms of vision,” Sci. Am., 241, No. 3, 130–144 (1979).

    Google Scholar 

  19. M. C. Bushnell, G. H. Duncan, R. K. Hofbauer, et al., “Pain perception: Is there a role for primary somatosensory cortex?,” Proc. Natl. Acad. Sci. USA,96, No. 14, 7705–7709 (1999).

    Article  CAS  Google Scholar 

  20. W. J. Penfield, “Somatic motor and sensory representation in the cerebral cortex of man as studies by electrical stimulation,” Brain, 60, No. 4, 3890–443 (1937).

    Article  Google Scholar 

  21. E. Bizzi and F. A.Mussa-Ivaldi, “Neurobiology of coordinate transformations,” The cognitive Neuroscience, 542-551 (2009).

  22. E. R. Kandel, The Search of Memory. The Emergence of a New Science of Mind, W. W. Norton and Co., New York, London (2006).

    Google Scholar 

  23. M. Golde, D. Y. von Cramon, and R. I. Schubotz, “Differential role of anterior prefrontal and premotor cortex in the processing of relational information,” Neuroimage, 49, No. 3, 2890–2900 (2009).

    Article  Google Scholar 

  24. D. J. Herzfeld, P. A. Vaswani, M. K. Marko, and R. Shadmehr, “A memory of errors in sensorimotor learning,” Science,345, No. 6202, 1349–1353 (2014) doi: https://doi.org/10.1126/science.1253138.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. V. Soloviov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soloviov, O.V., Dyachenko, Y.Y. & Kozak, R.V. Formation of a Precise Behavioral Motor Response to an External Pain Stimulus Is Not Possible without a Subjective Experience of Pain. Neurophysiology 51, 462–474 (2019). https://doi.org/10.1007/s11062-020-09843-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11062-020-09843-8

Keywords

Navigation