The Relationship between the Premenstrual Syndrome and Resting Cardiac Vagal Tone in Young Healthy Females: Role of Hormonal Contraception

Evolutionary-based predictions imply that the premenstrual syndrome (PMS) affects women who failed to conceive while in biosocial conditions that allow immediate reproduction. We investigated how the PMS is related to the heart rate variability (HRV), a marker of general fitness and well-being. The HRV indices (SDNN and rMSSD) were calculated using resting ECGs of 113 physiologically fertile women and 64 women using hormonal contraception (HC users, HCu). The intensity of PMS symptoms was self-assessed (Shortened Premenstrual Assessment Form). Analyses were conducted using parametric and nonparametric tests and general linear modelling (GLM). In HC non-users (HCnu), a greater intensity of PMS symptoms was significantly associated with higher values of HRV. Similar relations were not present in HCu. Post-hoc GLM confirmed that the relation between the PMS intensity and HRV indices varies as a function of the HCu status. A positive association between the PMS intensity and high HRV indices in women who did not use HC may confirm that the PMS affects fertile women who did not conceive, despite being in conditions favorable to pregnancy. The absence of a similar link in HCu women implies that synthetic steroids may disturb the link between the PMS and functioning of the autonomic nervous system.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    L. Dennerstein, P. Lehert, and K. Heinemann, “Global epidemiological study of variation of premenstrual symptoms with age and sociodemographic factors,” Menopause Int., 17, No. 3, 96–101 (2011), doi: https://doi.org/10.1258/mi.2011.011028.

  2. 2.

    L. Dennerstein, P. Lehert, and K. Heinemann, “Global study of women’s experiences of premenstrual symptoms and their effects on daily life,” Menopause Int., 17, No. 3, 88–95 (2011), doi: https://doi.org/10.1258/mi.2011.011027.

    Article  PubMed  Google Scholar 

  3. 3.

    U. Halbreich, T. Backstrom, E. Eriksson, et al., “Clinical diagnostic criteria for premenstrual syndrome and guidelines for their quantification for research studies,” Gynecol. Endocrinol., 23, No. 3, 123–130 (2007), doi: https://doi.org/10.1080/09513590601167969.

    Article  PubMed  Google Scholar 

  4. 4.

    K. A. Yonkers, P. M. O’Brien, and E. Eriksson, “Premenstrual syndrome,” Lancet, 371, No. 9619, 1200–1210 (2008), doi: https://doi.org/10.1016/S0140-6736(08)60527-9.

  5. 5.

    A. Direkvand-Moghadam, K. Sayehmiri, A. Delpisheh, and S. Kaikhavandi, “Epidemiology of premenstrual syndrome (PMS) – A systematic review and metaanalysis study,” J. Clin. Diagn. Res., 8, No. 2, 106–109 (2014), doi: https://doi.org/10.7860/JCDR/2014/8024.4021.

    Article  PubMed Central  Google Scholar 

  6. 6.

    A. J. Rapkin and A. L. Akopians, “Pathophysiology of premenstrual syndrome and premenstrual dysphoric disorder,” Menopause Int., 18, No. 2, 52–59 (2012), doi: https://doi.org/10.1258/mi.2012.012014.

    Article  PubMed  Google Scholar 

  7. 7.

    H.-U. Wittchen, E. Becker, R. Lieb, and P. Krause, “Prevalence, incidence and stability of premenstrual dysphoric disorder in the community,” Psychol. Med., 32, No. 1, 119–132 (2002).

    Article  Google Scholar 

  8. 8.

    J. Cunningham, K. A. Yonkers, S. O’Brien, and E. Eriks-son, “Update on research and treatment of premenstrual dysphoric disorder,” Harv. Rev. Psychiatry, 17, No. 2, 120–137 (2009), doi: https://doi.org/10.1080/10673220902891836.

    Article  PubMed  PubMed Central  Google Scholar 

  9. 9.

    L. Dennerstein, P. Lehert, T. C. Bäckström, and K. Heinemann, “Premenstrual symptoms – severity, duration and typology: an international cross-sectional study,” Menopause Int., 15, No. 3, 120–126 (2009), doi: https://doi.org/10.1258/mi.2009.009030.

    Article  PubMed  Google Scholar 

  10. 10.

    C. Henshaw, D. Foreman, J. Belcher, et al., “Can one induce premenstrual symptomatology in women with prior hysterectomy and bilateral oophorectomy?” J. Psychosom. Obstet. Gynaecol., 17, No. 1, 21–28 (1996), doi: https://doi.org/10.3109/01674829609025660.

    CAS  Article  PubMed  Google Scholar 

  11. 11.

    T. Bäckström, L. Andreen, V. Birzniece, et al., “The role of hormones and hormonal treatments in premenstrual syndrome,” CNS Drugs, 17, No. 5, 325–342 (2003), doi: https://doi.org/10.2165/00023210-200317050-00003.

  12. 12.

    U. Halbreich, “The etiology, biology, and evolving pathology of premenstrual syndromes,” Psychoneuroendocrinology, 28, Suppl. 3, 55–99 (2003), doi: https://doi.org/10.1016/S0306-4530(03)00097-0.

  13. 13.

    A. Ryu and T. H. Kim, “Premenstrual syndrome: A mini review,” Maturitas, 82, No. 4, 436–440 (2015), doi: https://doi.org/10.1016/j.maturitas.2015.08.010.

  14. 14.

    D. K. Kinney and, M. Tanaka, “An evolutionary hypothesis of depression and its symptoms, adaptive value, and risk factors,” J. Nerv. Ment. Dis., 197, No. 8, 561– 567 (2009), doi: https://doi.org/10.1097/NMD.0b013e3181b05fa8.

    Article  PubMed  Google Scholar 

  15. 15.

    M. R. Gillings, “Were there evolutionary advantages to premenstrual syndrome?” Evol. Appl., 7, No. 8, 897– 904 (2014), doi: https://doi.org/10.1111/eva.12190.

    Article  PubMed  PubMed Central  Google Scholar 

  16. 16.

    D. R. Rosseinsky and, P. G. Hall, “Letter: an evolutionary theory of premenstrual tension,” Lancet, 2, No. 7887, 1024 (1974), doi: https://doi.org/10.1016/S0140-6736(74)92132-1.

  17. 17.

    C. Reiber, “An evolutionary model of premenstrual syndrome,” Med. Hypotheses, 70, No. 5, 1058–1065 (2008), doi: https://doi.org/10.1016/j.mehy.2007.08.031.

    Article  PubMed  Google Scholar 

  18. 18.

    R. McCraty and F. Shaffer, “Heart rate variability: New perspectives on physiological mechanisms, assessment of self-regulatory capacity, and health risk,” Glob. Adv. Health Med., 4, No. 1, 46–61 (2015), doi: https://doi.org/10.7453/gahmj.2014.073.

  19. 19.

    A. Siennicka, D.S. Quintana, P. Fedurek, et al., “Resting heart rate variability, attention and attention maintenance in young adults, “ Int J Psychophysiol.,143:126-131 (2019), doi: 10.1016/j.ijpsycho.2019.06.017.

  20. 20.

    J. F. Thayer, A. L. Hansen, E. Saus-Rose, and B. H. Johnsen, “Heart rate variability, pre-frontal neural function, and cognitive performance: the neurovisceral integration perspective on self-regulation, adaptation, and health,” Ann. Behav. Med., 37, No. 2, 141–153 (2009), doi: https://doi.org/10.1007/s12160-009-9101-z.

    Article  PubMed  Google Scholar 

  21. 21.

    A. Reynard, R. Gevirtz, R. Berlow, et al., “Heart rate variability as a marker of self-regulation,” Appl. Psychophysiol. Biofeedback, 36, No. 3, 209–215. (2011), doi: 10.1007/s10484-011-9162-1.

  22. 22.

    G. Grandi, S. Ferrari, A. Xholli, et al., “Prevalence of menstrual pain in young women: what is dysmenorrhea?” J. Pain Res., 5, 169–174 (2012), doi: https://doi.org/10.2147/JPR.S30602.

  23. 23.

    M. A. Farage, S. Neill, and, A. B. MacLean, “Physiological changes associated with the menstrual cycle: a review,” Obstet. Gynecol. Surv., 64, No. 1, 58–72 (2009), doi: https://doi.org/10.1097/OGX.0b013e3181932a37.

    Article  PubMed  Google Scholar 

  24. 24.

    J. W. Tukey, Exploratory Data Analysis. Addison-Wesley Reading, PA (1977).

    Google Scholar 

  25. 25.

    R. Sitruk-Ware and A. Nath, “Metabolic effects of contraceptive steroids,” Rev. Endocr. Metab. Disord., 12, No. 2, 63–75 (2011), doi: https://doi.org/10.1007/s11154-011-9182-4.

    CAS  Article  PubMed  Google Scholar 

  26. 26.

    M. K. B. Lustyk, W. G. Gerrish, H. Douglas, et al., “Relationships among premenstrual symptom reports, menstrual attitudes, and mindfulness,” Mindfulness (NY), 2, No. 1, 37–48 (2011), doi: https://doi.org/10.1007/s12671-011-0041-x.

  27. 27.

    A. Rydlewska, E. A. Jankowska, B. Ponikowska, et al., “Changes in autonomic balance in patients with decompensated chronic heart failure,” Clin. Auton. Res., 21, No. 1, 47–54 (2011), doi: https://doi.org/10.1007/s10286-010-0089-z.

  28. 28.

    “Heart rate variability standards of measurement, physiological interpretation, and clinical use. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology,” Circulation, 93, No. 5, 1043–1065 (1996), doi: 10.1161/ 01.CIR.93.5.1043.

  29. 29.

    S. Nieuwenhuis, B. U. Forstmann, and E. J. Wagenmakers, “Erroneous analyses of interactions in neuroscience: a problem of significance,” Nat. Neurosci., 14, No. 9, 1105–1107 (2011), doi: https://doi.org/10.1038/nn.2886.

    CAS  Article  PubMed  Google Scholar 

  30. 30.

    X. Bai, J. Li, L. Zhou, and X. Li, “Influence of the menstrual cycle on nonlinear properties of heart rate variability in young women,” Am. J. Physiol.. Heart Circ. Physiol., 297, No. 2, H765–H774 (2009), doi: https://doi.org/10.1152/ajpheart.01283.2008.

    CAS  Article  PubMed  Google Scholar 

  31. 31.

    B. Grrishma, G. S. Gaur, S. Velkumary, et al., “Assessment of cardiovascular autonomic functions and baroreceptor reactivity in women with premenstrual syndrome,” Indian J. Physiol. Pharmacol., 59, No. 2, 148–154 (2015).

    CAS  PubMed  Google Scholar 

  32. 32.

    P. S. McKinley, A. R. King, P. A. Shapiro, et al., “The impact of menstrual cycle phase on cardiac autonomic regulation,” Psychophysiology, 46, No. 4, 904–911 (2009), doi: https://doi.org/10.1111/j.1469-8986.2009.00811.x.

  33. 33.

    T. Princi, S. Parco, A. Accardo, et al., “Parametric evaluation of heart rate variability during the menstrual cycle in young women,” Biomed. Sci. Instrum., 41, 340– 345 (2005).

    PubMed  Google Scholar 

  34. 34.

    Y. Saeki, F. Atogami, K. Takahashi, and T. Yoshizawa, “Reflex control of autonomic function induced by posture change during the menstrual cycle,” J. Auton. Nerv. Syst., 66, Nos. 1–2, 69–74 (1997), doi: 10.1016/ S0165-1838(97)00067-2.

  35. 35.

    N. Sato, S. Miyake, J. Akatsu, and M. Kumashiro, “Power spectral analysis of heart rate variability in healthy young women during the normal menstrual cycle,” Psychosom. Med., 57, No. 4, 331–335 (1995).

    CAS  Article  Google Scholar 

  36. 36.

    A. Yildirir, G. Kabakci, E. Akgul, et al., “Effects of menstrual cycle on cardiac autonomic innervation as assessed by heart rate variability,” Ann. Noninvasive Electrocardiol., 7, No. 1, 60–63 (2002), doi: https://doi.org/10.1111/j.1542-474X.2001.tb00140.x.

  37. 37.

    E. W. Freeman, U. Halbreich, G. S. Grubb, et al., “An overview of four studies of a continuous oral contraceptive (levonorgestrel 90 mcg/ethinyl estradiol 20 mcg) on premenstrual dysphoric disorder and premenstrual syndrome,” Contraception, 85, No. 5, 437–445 (2012), doi: https://doi.org/10.1016/j.contraception.2011.09.010.

  38. 38.

    L. M. Lopez, A. A. Kaptein, and F. M. Helmerhorst, “Oral contraceptives containing drospirenone for premenstrual syndrome,” Cochrane Database Syst. Rev., 23, No. 1, CD006586 (2012), doi: 10.1002/14651858. CD006586.pub2.

  39. 39.

    C. Barth, A. Villringer, and J. Sacher, “Sex hormones affect neurotransmitters and shape the adult female brain during hormonal transition periods,” Front. Neurosci., 9, 37 (2015), doi: https://doi.org/10.3389/fnins.2015.00037.

    Article  PubMed  PubMed Central  Google Scholar 

  40. 40.

    T. Matsumoto, T. Ushiroyama, T. Kimura, et al., “Altered autonomic nervous system activity as a potential etiological factor of premenstrual syndrome and premenstrual dysphoric disorder,” Biopsychosoc. Med., 1, 24 (2007), doi: https://doi.org/10.1186/1751-0759-1-24.

    Article  PubMed  PubMed Central  Google Scholar 

  41. 41.

    B. A. Pletzer and H. H. Kerschbaum, “50 years of hormonal contraception – time to find out, what it does to our brain,” Front. Neurosci., 8, 256, 1–6 (2014), doi: https://doi.org/10.3389/fnins.2014.0025.

    Article  Google Scholar 

  42. 42.

    T. Bäckström, M. Bixo, and J. Strömberg, “GABAA receptor-modulating steroids in relation to women’s behavioral health, Curr. Psychiatry Rep., 17, No. 11, 92 (2015), doi: 10.1007/s11920-015-0627-4.

  43. 43.

    V. De Leo, M. C. Musacchio, V. Cappelli, et al., “Hormonal contraceptives: pharmacology tailored to women’s health,” Hum. Reprod. Update, 22, No. 5, 634–646 (2016), doi: https://doi.org/10.1093/humupd/dmw016.

    CAS  Article  PubMed  Google Scholar 

  44. 44.

    D. Shoupe and D. R. Mishell, “Oral contraceptives,” In: D. Shoupe and S. L. Kjos (Eds.), The Handbook of Contraception (pp. 13–43). Humana Press, Totowa, NJ (2016).

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to D. P. Danel.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Danel, D.P., Kozak, K., Szala, A. et al. The Relationship between the Premenstrual Syndrome and Resting Cardiac Vagal Tone in Young Healthy Females: Role of Hormonal Contraception. Neurophysiology 51, 447–454 (2019). https://doi.org/10.1007/s11062-020-09841-w

Download citation

Keywords

  • premenstrual syndrome (PMS)
  • autonomic nervous system
  • heart rate variability (HRV)
  • cardiac vagal tone
  • physiological wellbeing
  • hormonal contraception