Skip to main content

Post-tetanic Potentiation and Depression in Hippocampal Neurons in a Rat Model of Alzheimer’s Disease: Effects of Teucrium Polium Extract

The plant Teucrium polium (T.p.) possesses a wide range of pharmacological activities due to the presence, in particular, of different phytochemicals, phenols and flavonoids. We examined the effects of the T.p. extract on impulse activity of hippocampal neurons in rats with a model of Alzheimer’s disease. Adult albino rats were divided into three groups (5 animals in each). The control group C obtained intracerebroventricular (i.c.v.) infusions of saline, animals of group Aβ were i.c.v. infused with amyloid β peptide 25–35, Aβ(25–35), and group Aβ+T.p. was treated by both Aβ(25–35) infusions and introductions of the T.p. extract. In group Aβ, a greater proportion of hippocampal neurons with post-tetanic depression after high-frequency stimulation of the entorhinal cortex, lower values of the frequency of background activity generated by the above neurons, and relatively weaker modifications of spike activity (post-tetanic potentiation and depression) were observed. Daily administrations of the T.p. extract partially but considerably reversed the above-mentioned negative shifts in spike activity of hippocampal neurons caused by Aβ(25–35). We suggest that T.p. extract containing important phytochemicals is capable of ameliorating the memory dysfunction caused by Aβ(25–35) via blocking amyloid deposition and a positive influence on the functions of hippocampal neurons.

This is a preview of subscription content, access via your institution.

References

  1. M. D. Ikonomovic, W. E. Klunk, E. E. Abrahamson, et al., “Post-mortem correlates of in vivo PiB-PET amyloid imaging in a typical case of Alzheimer’s disease,” Brain, 131, Pt. 6, 1630–1645 (2008).

    Article  Google Scholar 

  2. I. Rivera, R. Capone, D. M. Cauvi, et al., “Modulation of Alzheimer’s amyloid β peptide oligomerization and toxicity by extracellular Hsp70,” Cell Stress Chaperones, 23, No. 2, 269–279 (2017).

    Article  Google Scholar 

  3. V. Cavallucci, M. D’Amelio, and E. Cecconi, “Aβ toxicity in Alzheimer’s disease,” Mol. Neurobiol., 45, No. 2, 366–378 (2012).

    CAS  Article  Google Scholar 

  4. S. W. Scheff and D. A. Price, “Synaptic pathology in Alzheimer’s disease: a review of ultrastructural studies,” Neurobiol. Aging, 24, No. 8, 1029–1046 (2003).

    CAS  Article  Google Scholar 

  5. T. Arendt, “Synaptic degeneration in Alzheimer’s disease,” Acta Neuropathol., 118, No. 1, 167–179 (2009).

    Article  Google Scholar 

  6. M. H. Tran, K. Yamada, and T. Nabeshima, “Amyloid beta-peptide induces cholinergic dysfunction and cognitive deficits: a minireview,” Peptides, 23, No. 7, 1271–1283 (2002).

    CAS  Article  Google Scholar 

  7. A. Itoh, A. Nitta, M. Nadai, et al., “Dysfunction of cholinergic and dopaminergic neuronal systems in betaamyloid protein-infused rats,” J. Neurochem., 66, No. 3, 1113–1117 (1996).

    CAS  Article  Google Scholar 

  8. N. Origlia, M. Righi, S. Capsoni, et al., “Receptor for advanced glycation end product-dependent activation of p38 mitogen-activated protein kinase contributes to amyloid-beta-mediated cortical synaptic dysfunction,” J. Neurosci., 28, No. 13, 3521–3530 (2008).

    CAS  Article  Google Scholar 

  9. J. Kim, H. J. Lee, and K. W. Lee, “Naturally occurring phytochemicals for the prevention of Alzheimer’s disease,” J. Neurochem., 112, No. 6, 1415–1430 (2010).

    CAS  Article  Google Scholar 

  10. P. Thomas, Y. J. Wang, J. H. Zhong, et al., “Grape seed polyphenols and curcumin reduce genomic instability events in a transgenic mouse model for Alzheimer’s disease,” Mutat. Res., 661, Nos. 1–2, 25–34 (2009).

  11. R. Flamini, “Recent applications of mass spectrometry in the study of grape and wine polyphenols,” ISRN Spectrosc., 2013, ID 813563, 45 pages (2013).

  12. F. Guedj, C. Sébrié, I. Rivals, et al., “Green tea polyphenols rescue of brain defects induced by overexpression of DYRK1A,” PloS One, 4, No. 2, e4606 (2009).

    Article  Google Scholar 

  13. L. G. Korkina, “Phenylpropanoids as naturally occurring antioxidants: from plant defense to human health,” Cell. Mol. Biol. (Noisy-le-grand), 53, No. 1, 15–25 (2007).

    CAS  Google Scholar 

  14. A. M. Galstyan, A. S. Shashkov, G. B. Oganesyan, et al., “Structure of two new diterpenoids from Teucrium polium,” Chem. Nat. Compd, 28, No. 5, 439–443 (1992).

    Article  Google Scholar 

  15. G. B. Oganesyan, A. M. Galstyan, V. A. Mnatsakanyan, et al., “Phenylpropanoid glycosides of Teucrium polium,” Chem. Nat. Compd., 27, No. 5, 556–559 (1991).

    Article  Google Scholar 

  16. H. M. Galstyan, “Standardization of felty germander (Teucrium polium L.) by natural phytoestrogens: Phenylpropanoid and flavonoid glycosides,” NAMJ, 8, No. 2, 53–58. (2014).

  17. K. V. Simonyan and V. A, Chavushyan, “Protective effects of hydroponic Teucrium polium on hippocampal neurodegeneration in ovariectomized rats,” BMC Complem. Altern. Med., 16, No. 1, 415 (2016).

  18. N. E. Tadevosyan, H. M. Galstyan, A. A. Tumanyan, and B. B. Forgan. “Dynamics of cognitive processes in middle-aged women treated with a fraction derived from hydroponic Teucrium polium Lamiaceae,” Neurosci. Behav. Physiol., 49, 484–489, (2019).

    Article  Google Scholar 

  19. T. Maurice T. P. Su, and A. Privat, “Sigma1 (sigma 1) receptor agonists and neurosteroids attenuate beta25–35-amyloid peptide-induced amnesia in mice through a common mechanism,” Neuroscience, 83, No. 2, 413–428 (1998).

    CAS  Article  Google Scholar 

  20. G. Biringanine, M. T. Chiarelli, M. Faes, and P. Duez, “A validation protocol for the HPTLC standardization of herbal products: application to the determination of acteoside in leaves of Plantago palmata Hook. f.s.,” Talanta, 69, No. 2, 418–424 (2006).

    CAS  Article  Google Scholar 

  21. H. M. Galstyan, L. V. Revazova, and H. V. Topchyan, “Digital indices and microscopic analyses of wild growing and overgrowing of Teucrium polium L. in hydroponic conditions,” New Arm. Med J., 4, No. 3, 104 (2010).

  22. H. M. Galstyan, “Standardization of Teucrium polium L. by natural phytoestrogens phenylpropanoid glycosids and flavonoids,” New Arm. Med J., 8, No. 2б 53–58 (2014).

  23. V. Chavushyan, K. Simonyan, and H. Galstyan, “Toxicity studies of Teucrium polium Lamiaceae growing in nature and in culture,” The Second Internat Symp “Biopharma 2010: from science to industry”, May 17–20, Armenia, Yerevan: 2010. p. 11, 45.

  24. G. Paxinos and C. Watson, The Rat Brain in Stereotaxic Coordinates (6th ed.), Academic Press (2007)

  25. D. B Freir, C. Holscher, and C. E. Herron, “Blockade of long-term potentiation by beta-amyloid peptides in the CA1 region of the rat hippocampus in vivo,” J. Neurophysiol., 85, No. 2, 708–713 (2001).

  26. T. Ondrejcak , I. Klyubin, N. W Hu, et al., “Alzheimer’s disease amyloid β-protein and synaptic function,” Neuromol. Med., 12, No. 1, 13–26 (2010).

    Article  Google Scholar 

  27. M. V. Storozhuk, S. Y. Ivanova, T. A. Pivneva, et al., “Post-tetanic depression of GABAergic synaptic transmission in rat hippocampal cell cultures,” Neurosci. Lett., 323, No. 1, 5–8 (2002).

    CAS  Article  Google Scholar 

  28. J. S. Rothman, L. Cathala, V. Steuber, and R. A. Silver, “Synaptic depression enables neuronal gain control,” Nature, 457, 1015–1018 (2009).

    CAS  Article  Google Scholar 

  29. F. Pouille and M. Scanziani, “Routing of spike series by dynamic circuits in the hippocampus,” Nature, 429, 717–723 (2004).

    CAS  Article  Google Scholar 

  30. R. S. Zucker and W. G. Regehr, “Short-term synaptic plasticity,” Annu. Rev. Physiol., 64, 355 405 (2002).

    CAS  Article  Google Scholar 

  31. T. C. Sudhof and J. E. Rothman, “Membrane fusion: Grappling with SNARE and SM proteins,” Science, 323, No. 5913, 474– 477 (2009).

    Article  Google Scholar 

  32. K. L. Magleby, “Short-term changes in synaptic efficacy,” In Synaptic Function (Edelman G. M. et al., eds.), pp. 21–56. Wiley, New York (1987).

  33. N. Korogod, X. Lou, and R. Schneggenburger, “Presynaptic Ca2+ requirements and developmental regulation of posttetanic potentiation at the calyx of Held,” J. Neurosci., 25, No. 21, 5127–5137 (2005).

    CAS  Article  Google Scholar 

  34. W. A. Catterall and A. P. Few, “Calcium channel regulation and presynaptic plasticity,” Neuron, 59, No. 6, 882–901 (2008).

    CAS  Article  Google Scholar 

  35. B. L. Sabatini and W. G. Regehr, “Control of neurotransmitter release by presynaptic waveform at the granule cell to Purkinje cell synapse,” J. Neurosci., 17, No. 10, 3425–3435 (1997).

    CAS  Article  Google Scholar 

  36. J. R. Geiger and P. Jonas, “Dynamic control of presynaptic Ca(2+) inflow by fast-inactivating K(+) channels in hippocampal mossy fiber boutons,” Neuron, 28, No. 3, 927–939 (2000).

    CAS  Article  Google Scholar 

  37. R. L. Habets and J. G. Borst, “An increase in calcium influx contributes to post-tetanic potentiation at the rat calyx of Held synapse,” J. Neurophysiol., 96, No. 6, 2868–2876 (2006).

    CAS  Article  Google Scholar 

  38. M. Beierlein, D. Fioravante, and W. G. Regehr, “Differential expression of posttetanic potentiation and retrograde signaling mediate target-dependent short-term synaptic plasticity,” Neuron, 54, No. 6, 949–959 (2007).

    CAS  Article  Google Scholar 

  39. F. Fiumara, C. Milanese, A. Corradi, et al., “Phosphorylation of synapsin domain A is required for posttetanic potentiation,” J. Cell Sci., 120, Pt. 18, 3228–3237 (2007).

    CAS  Article  Google Scholar 

  40. E. Karran, M. Mercken, and B. De Strooper, “The amyloid cascade hypothesis for Alzheimer’s disease: An appraisal for the development of therapeutics,” Nat. Rev. Drug Discov., 10, No. 9, 698 712 (201 1).

    CAS  Article  Google Scholar 

  41. D. B. Freir and C. E. Herron, “Inhibition of L-type voltage dependent calcium channels causes impairment of long-term potentiation in the hippocampal CA1 region in vivo,” Brain Res., 967, Nos. 1–2, 27–36 (2003).

    CAS  Article  Google Scholar 

  42. C. Holscher, S. Gengler, V. A. Gault, et al., “Soluble beta-amyloid[25-35] reversibly impairs hippocampal synaptic plasticity and spatial learning,” Eur. J. Pharmacol., 561, Nos. 1–3, 85–90 (2007).

    CAS  Article  Google Scholar 

  43. S. Gengler, V. A. Gault, P. Harriott, and C. Hölscher, “Impairments of hippocampal synaptic plasticity induced by aggregated beta-amyloid (25-35) are dependent on stimulation-protocol and genetic background,” Exp. Brain Res., 179, No. 4, 621–630 (2007).

    Article  Google Scholar 

  44. I. Orhan and M. Aslan, “Appraisal of scopolamineinduced antiamnesic effect in mice and in vitro antiacetylcholinesterase and antioxidant activities of some traditionally used Lamiaceae plants,” J. Ethnopharmacol., 122, No. 2, 327–332 (2009).

    Article  Google Scholar 

  45. P. Hasanein and S. Shahidi, “Preventive effect of Teucrium polium on learning and memory deficits in diabetic rats,” Med. Sci. Monit., 18, No. 1, BR41–BR46 (2012).

    Article  Google Scholar 

  46. R. Alcázar, M. C. De la Torre, B. Rodríguez, et al., “Neoclerodane diterpenoids from three species of Teucrium,” Phytochemistry, 31, No. 11, 3957–3960 (1992).

    Article  Google Scholar 

  47. S. Bahramikia and R. Yazdanparast, “Phytochemistry and medicinal properties of Teucrium polium L. (Lamiaceae),” Phytother. Res., 26, No. 11, 1581–1593 (2012).

    CAS  Article  Google Scholar 

  48. M. Rafieian-Kopaei and H. Nasri, “Comment on preventive effect of Teucrium polium on learning and memory deficits in diabetic rats,” Med. Sci. Monit. Basic Res., 19, 208–209 (2013).

    Article  Google Scholar 

  49. J. Lin, L. Gao, S. X. Huo, et al., “Effect of acteoside on learning and memory impairment induced by scopolamine in mice,” China J. Chin. Mater. Med., 37, No. 19, 2956–2959 (2012).

    CAS  Google Scholar 

  50. L. Gao, X. Peng, S. Huo, et al., “Acteoside enhances expression of neurotrophin-3 in brain tissues of subacute aging mice induced by d-galactose combined with aluminum trichloride,” Chin. J. Cell. Mol. Immunol., 30, No. 10, 1022–1025 (2014).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. V. Simonyan.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Simonyan, K.V., Galstyan, H.M. & Chavushyan, V.A. Post-tetanic Potentiation and Depression in Hippocampal Neurons in a Rat Model of Alzheimer’s Disease: Effects of Teucrium Polium Extract. Neurophysiology 51, 332–343 (2019). https://doi.org/10.1007/s11062-020-09827-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11062-020-09827-8

Keywords

  • model of Alzheimer’s disease
  • amyloid β peptide (25–35)
  • intracerebroventricular
  • infusions, hippocampal neurons, entorhinal cortex, tetanic potentiation and depression, posttetanic
  • potentiation and depression.