Skip to main content
Log in

Influence of Emotional Imagery on Risk Perception and Decision Making in Autism Spectrum Disorder

  • Published:
Neurophysiology Aims and scope

We investigated the effect of emotions evoked while imagination of the risk consequences in certain life situations on the risk perception and subsequent behavioral reactions in autism spectrum disorder (ASD). The participants (20 ASD and 20 typically developing, TD, subjects) were asked to imagine the consequences of a given risky scenario (the consequences could be either negative or positive) and then mark their risk assessment and reactions on a rating scale. During this process, EEG activities were traced by recording from the parietal (P3, P4), occipital (O1, O2), and frontal (F3, F4) lobes. During imagery, EEG spectral power and imagery alpha index (IAI) values were statistically evaluated, while the approximate entropy (ApEn) reflected the presence of emotions, as well as differentiation between imagery and general involvement in the task. The lower IAI and higher theta power values at both positive and negative consequences of the imaged situations reflected the risk-taking attitude of ASD individuals. The insignificant performance difference of both consequences suggests that the decisions are independent of the risk outcomes in ASD subjects relative to TD individuals. Moreover, the lower negative correlation value suggests that risk knowledge is poorly built in ASD persons and thus leads to impulsive risk taking. The higher imagery ApEn values relative to a neutral state in both ASD and TD individuals indicated intense engagement in the imagery rather than general involvement. However, the lower ApEn in ASDs relative to TDs reflected the poor influence of emotions on the risk sense and subsequent reactions of the former individuals. Thus, it can be concluded that the attenuated emotional imagery of the risk consequences is poorly associated with the risk perception and subsequent decisions in ASD subjects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (France)

Instant access to the full article PDF.

Institutional subscriptions

REFERENCES

  1. Tanu and D. Kakkar, “Strengthening risk prediction using statistical learning in children with autism spectrum disorder,” Adv. Autism, 4, No. 3, 141–152 (2018).

    Google Scholar 

  2. M. South, M. J. Larson, S. E. White, et al., “Better fear conditioning is associated with reduced symptom severity in autism spectrum disorders,” Autism Res., 4, No. 6, 412–421 (2011).

    PubMed  Google Scholar 

  3. A. Banerjee, C. T. Engineer, B. L. Sauls, et al., “Abnormal emotional learning in a rat model of autism exposed to valproic acid in utero,” Front. Behav. Neurosci., 8, 387 (2014).

    PubMed  PubMed Central  Google Scholar 

  4. R. Bernier, G. Dawson, H. Panagiotides, and S. Webb, “Individuals with autism spectrum disorder show normal responses to a fear potential startle paradigm,” J. Autism Dev. Disord., 35, No. 5, 575–583 (2005).

    PubMed  Google Scholar 

  5. American Psychiatric Association. DSM-IV-TR: Diagnostic and statistical manual of mental disorders, text revision. Washington, DC, Am. Psychiatr. Assoc., vol. 75 (2000).

  6. G. Loewenstein, E. U. Weber, C. K. Hsee, and N. Welch, “Risk as feelings,” Psychol. Bull., 127, No. 2, 267–286 (2001).

    CAS  PubMed  Google Scholar 

  7. E. A. Holmes and A. Mathews, “Mental imagery and emotion: A special relationship?” Emotion, 5, No. 4, 489 (2005).

    Google Scholar 

  8. M. Lauriola and I. P. Levin, “Personality traits and risky decision-making in a controlled experimental task: An exploratory study,” Pers. Indiv. Differ., 31, No. 2, 215–226 (2001).

    Google Scholar 

  9. A. Öhman, and S. Mineka, “Fears, phobias, and preparedness: toward an evolved module of fear and fear learning,” Psychol. Rev., 108, No. 3, 483 (2001).

    PubMed  Google Scholar 

  10. P. Van Schaik and P. Kusev, “Human preferences and risky choices,” Front. Psychol., 2, 333 (2011).

    PubMed  PubMed Central  Google Scholar 

  11. R. L. Reniers, L. Murphy, A. Lin, et al., “Risk perception and risk-taking behaviour during adolescence: the influence of personality and gender,” PloS One, 11, No. 4, e0153842 (2016).

    PubMed  PubMed Central  Google Scholar 

  12. J. Traczyk, A. Sobkow, and T. Zaleskiewicz, “Affectladen imagery and risk taking: the mediating role of stress and risk perception,” PloS One, 10, No. 3, e0122226 (2015).

    PubMed  PubMed Central  Google Scholar 

  13. M. South, J. Dana, S. E. White, and M. J. Crowley, “Failure is not an option: Risk-taking is moderated by anxiety and also by cognitive ability in children and adolescents diagnosed with an autism spectrum disorder,” J. Autism Dev. Disord., 41, No. 1, 55–65 (2011).

    PubMed  Google Scholar 

  14. M. South, S. Ozonoff, Y. Suchy, et al., “Intact emotion facilitation for nonsocial stimuli in autism: Is amygdala impairment in autism specific for social information?” J. Int. Neuropsych. Soc., 14, No. 1, 42–54 (2008).

    Google Scholar 

  15. L. Sterling, J. Munson, A. Estes, et al., “Fear-potentiated startle response is unrelated to social or emotional functioning in adolescents with autism spectrum disorders,” Autism Res., 6, No. 5, 320–331 (2013).

    PubMed  PubMed Central  Google Scholar 

  16. M. South, P. D. Chamberlain, S. Wigham, et al., “Enhanced decision making and risk avoidance in high-functioning autism spectrum disorder,” Neuropsychology, 28, No. 2, 222–228 (2014).

    PubMed  Google Scholar 

  17. B. De Martino, N. A. Harrison, S. Knafo, et al., “Explaining enhanced logical consistency during decision making in autism,” J. Neurosci., 28, No. 42, 10746–10750 (2008).

    PubMed  PubMed Central  Google Scholar 

  18. A. Minassian, M. Paulus, A. Lincoln, and W Perry, “Adults with autism show increased sensitivity to outcomes at low error rates during decision-making,” J. Autism Dev. Disord., 37, No. 7, 1279–1288 (2007).

    PubMed  Google Scholar 

  19. J. Fujino, S. Tei, R. I. Hashimoto, et al., “Attitudes toward risk and ambiguity in patients with autism spectrum disorder,” Mol. Autism, 8, No. 1, 45 (2017).

    PubMed  PubMed Central  Google Scholar 

  20. M. Kunda and A. K. Goel, “Thinking in pictures as a cognitive account of autism,” J. Autism Dev. Disord.,41, No. 9, 1157–1177 (2011).

    PubMed  Google Scholar 

  21. R. K. Kana, Y. Liu, D. L. Williams, et al., “The local, global, and neural aspects of visuospatial processing in autism spectrum disorders,” Neuropsychologia, 51, No. 14, 2995–3003 (2013).

    PubMed  PubMed Central  Google Scholar 

  22. T. J. Silk, N. Rinehart, J. L. Bradshaw, et al., “Visuospatial processing and the function of prefrontal-parietal networks in autism spectrum disorders: a functional MRI study,” Am. J. Psychiat., 163, No. 8, 1440–1443 (2006).

    PubMed  Google Scholar 

  23. I. Soulieres, T. A. Zeffiro, M. L. Girard, and L. Mottron, “Enhanced mental image mapping in autism,” Neuropsychologia, 49, No. 5, 848–857 (2011).

    CAS  PubMed  Google Scholar 

  24. C. P. Sahyoun, J. W. Belliveau, I. Soulières, et al., “Neuroimaging of the functional and structural networks underlying visuospatial vs. linguistic reasoning in highfunctioning autism,” Neuropsychologia,48, No. 1, 86–95 (2010).

    PubMed  PubMed Central  Google Scholar 

  25. K. L. Maras, M. C. Wimmer, E. J. Robinson, and D. M. Bowler, “Mental imagery scanning in autism spectrum disorder,” Res. Autism Spect. Dis., 8, No. 10, 1416–1423 (2014).

    Google Scholar 

  26. G. Esposito, S. Dellantonio, C. Mulatti, and R. Job, “Axiom, anguish, and amazement: how autistic traits modulate emotional mental imagery,” Front. Psychol, 7, 757 (2016).

    PubMed  PubMed Central  Google Scholar 

  27. A. Ozsivadjian, M. J. Hollocks, J. Southcott, et al., “Anxious imagery in children with and without autism spectrum disorder: an investigation into occurrence, content, features and implications for therapy,” J. Autism Dev. Disord., 47, No. 12, 3822–3832 (2017).

    PubMed  Google Scholar 

  28. X. Cui, C.B. Jeter, D. Yang, et al., “Vividness of mental imagery: individual variability can be measured objectively,” Vision Res., 47, No. 4, 474–478 (2007).

    PubMed  PubMed Central  Google Scholar 

  29. J. G. Cremades, “The effects of imagery perspective as a function of skill level on alpha activity,” Int. J. Psychophysiol., 43, No. 3, 261–271 (2002).

    Google Scholar 

  30. R. S. Schaefer, R. J. Vlek, and P. Desain, “Music perception and imagery in EEG: Alpha band effects of task and stimulus,” Int. J. Psychophysiol., 82, No. 3, 254–259 (2011).

    PubMed  Google Scholar 

  31. J. Li, Y. Y. Tang, L. Zhou, et al., “EEG dynamics reflects the partial and holistic effects in mental imagery generation,” J. Zhejiang Univ. Sci., B, 11, No. 12, 944–951 (2010).

    Google Scholar 

  32. D. F. Marks and A. R. Isaac, “Topographical distribution of EEG activity accompanying visual and motor imagery in vivid and non-vivid imagers,” Brit. J. Psychol., 86, No. 2, 271–282 (1995).

    PubMed  Google Scholar 

  33. F. Bartsch, G. Hamuni, V. Miskovic, et al., “Oscillatory brain activity in the alpha range is modulated by the content of word-prompted mental imagery,” Psychophysiology, 52, No. 6, 727–735 (2015).

    PubMed  PubMed Central  Google Scholar 

  34. A. Fink and M. Benedek, “EEG alpha power and creative ideation,” Neurosci. Biobehav. Rev., 44, 111–123 (2014).

    PubMed  PubMed Central  Google Scholar 

  35. A. Fink, C. Rominger, M. Benedek, et al., “EEG alpha activity during imagining creative moves in soccer decision-making situations,” Neuropsychologia, 114, 118–124 (2018).

    PubMed  Google Scholar 

  36. C. W. Quaedflieg, F. T. Smulders, T. Meyer, et al., “The validity of individual frontal alpha asymmetry EEG neurofeedback,” Soc. Cogn. Affect. Neurosci., 11, No. 1, 33–43 (2015).

    PubMed  PubMed Central  Google Scholar 

  37. Y. Y. Lee and S. Hsieh, “Classifying different emotional states by means of EEG-based functional connectivity patterns,” PloS One, 9, No. 4, e95415 (2014).

    PubMed  PubMed Central  Google Scholar 

  38. M. Murugappan, N. Ramachandran, and Y. Sazali, “Clas-sification of human emotion from EEG using discrete wavelet transform” J. Biomed. Sci. Eng., 3, No. 4, 390–396 (2010).

    Google Scholar 

  39. J. Li, G. Liu, and J. Gao, “Analysis of positive and negative emotions based on EEG signal,” in: 2016 Int. Conf. Artific. Intellig. Engineer. Appl. Atlantis Press (2016).

  40. L. Wei, Y. Li, J. Ye, et al., “Emotion-induced higher wavelet entropy in the EEG with depression during a cognitive task,” in: 2009 Ann. Int. Conf. IEEE Engineer. Med. Biol. Soc. (2009, September) IEEE, pp. 5018–5021).

  41. A. Pakhomov and N. Sudin, “Thermodynamic view on decision-making process: emotions as a potential power vector of realization of the choice,” Cogn. Neurodyn.,7, No. 6, 449–463 (2013).

    PubMed  PubMed Central  Google Scholar 

  42. L. I. Aftanas, N. V. Lotova, V. I. Koshkarov, et al., “Non-linear analysis of emotion EEG: calculation of Kolmogorov entropy and the principal Lyapunov exponent,” Neurosci. Lett., 226, No. 1, 13–16 (1997).

    CAS  PubMed  Google Scholar 

  43. K. H. Chon, C. G. Scully, and S. Lu, “Approximate entropy for all signals,” IEEE Eng. Med. Biol., 28, No. 6, 18–23 (2009).

    Google Scholar 

  44. P. Zarjam, J. Epps, and N. H. Lovell, “Characterizing mental load in an arithmetic task using entropy-based features,” in: Inform. Sci., Sign. Proc. Appl. (ISSPA), 11th Int. Conf. (2012, July), IEEE, pp. 199–204.

  45. N. Jaiswal, W. Ray, and S. Slobounov, “Encoding of visual–spatial information in working memory requires more cerebral efforts than retrieval: Evidence from an EEG and virtual reality study,” Brain Res., 1347, 80–89 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. N. Shourie, M. Firoozabadi, and K. Badie, “Analysis of EEG signals related to artists and nonartists during visual perception, mental imagery, and rest using approximate entropy,” Biomed. Res. Int.,2014, 764382 (2014).

    PubMed  PubMed Central  Google Scholar 

  47. O. Jensen and C. D. Tesche, “Frontal theta activity in humans increases with memory load in a working memory task,” Eur. J. Neurosci., 15, No. 8, 1395–1399 (2002).

    PubMed  Google Scholar 

  48. S. A. Massar, J. L. Kenemans, and D. J. Schutter, “Resting-state EEG theta activity and risk learning: sensitivity to reward or punishment?” Int. J. Psychophysiol., 91, No. 3, 172–177 (2014).

    PubMed  Google Scholar 

  49. Z. Yaple, M. Martinez-Saito, M. Feurra, et al., “Transcranial alternating current stimulation modulates risky decision making in a frequency controlled experiment,” eNeuro, 4, No. 6, ENEURO.0136–17 (2017).

    PubMed  PubMed Central  Google Scholar 

  50. J. Jacobs, G. Hwang, T. Curran, and M. J. Kahana, “EEG oscillations and recognition memory: theta correlates of memory retrieval and decision making,” NeuroImage, 32, No. 2, 978–987 (2006).

    PubMed  Google Scholar 

  51. A. J. Malin, “Manual for Malin’s intelligence scale for Indian children (MISIC),” Ind. Psychol. Corp., Lucknow (1969).

  52. E. U. Weber, A. R. Blais, and N. E. Betz, “A domainspecific risk-attitude scale: Measuring risk perceptions and risk behaviors,” J. Behav. Dec. Making, 15, No. 4, 263–290 (2002).

    Google Scholar 

  53. A. Galentino, N. Bonini, and L. Savadori, “Positive arousal increases individuals’ preferences for risk,” Front. Psychol., 8, 2142 (2017).

    PubMed  PubMed Central  Google Scholar 

  54. A. Delorme and S. Makeig, “EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis,” J. Neurosci. Meth., 134, No. 1, 9–21 (2004).

    Google Scholar 

  55. Z. X. Liu, S. Woltering, and M. D. Lewis, “Developmental change in EEG theta activity in the medial prefrontal cortex during response control,” Neuroimage, 85, Pt. 2, 873–887 (2014).

    PubMed  Google Scholar 

  56. M. Simões, R. Monteiro, J. Andrade, et al., “A novel biomarker of compensatory recruitment of face emotional imagery networks in autism spectrum disorder,” Front. Neurosci.-Switz., 12, 791 (2018).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tanu or D. Kakkar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tanu, Kakkar, D. Influence of Emotional Imagery on Risk Perception and Decision Making in Autism Spectrum Disorder. Neurophysiology 51, 281–292 (2019). https://doi.org/10.1007/s11062-019-09822-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11062-019-09822-8

Keywords

Navigation