Skip to main content
Log in

Can Excessive Oxygen Cause Hyperactive Behavior Disorder in Preterm Children? Cognitive Effects of Hyperoxia in the Preterm Brain of Rats

  • Published:
Neurophysiology Aims and scope

There is a paucity of data on the effects of hyperoxia-induced brain damage on learning and such psychosocial phenomenon as anxiety. Preterm infants encounter hyperoxia within a relatively early stage of life (leaving the intrauterine environment earlier than was expected) and are exposed to high-level hyperoxic stress due to the insufficiency of their antioxidant defense mechanisms. In an experimental rat model, we investigated the effects of early postnatal hyperoxia on learning, anxiety, and depression in the early adulthood period. Rat nestlings (n = 7) were exposed to about 80% oxygen for the first 5 days after birth to create a rat model of hyperoxia, and these nestlings and those of the control group (n = 7) were subjected to behavioral tests (Morris water tank, open-field test, elevated plus maze, and Porsolt test) at 30 days old. Video recordings of the tests were captured, and indices of the tests in the experimental groups were compared with the Mann–Whitney U-test. In the Morris water navigation task, the latency and distance required to locate the platform were greater (P = 0.018 and 0.025, respectively) in the hyperoxia group than in the control group, suggesting that exposure to hyperoxia during the development of the brain can exert a negative effect on the learning function. There was no difference in the time spent in the open center area of the open-field test (anxiety), while the rats in the hyperoxia group spent more time in the enclosed area in the elevated plus maze test, suggesting a higher level of anxiety (P = 0.048). In the Porsolt test, rats in the hyperoxia group moved faster (P = 0.013) and travelled a longer distance (P = 0.048). Although this finding suggests less depressive behavior in the mentioned group, which was contrary to the expectations, this may also explain the tendency of preterm infants to hyperactivity at later ages. Thus, it has been demonstrated experimentally that exposure of neonates to oxygen exceeding physiological needs may cause behavioral problems, such as impaired learning, anxiety, and hyperactivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. J. D. Saugstad, “Is oxygen more toxic than currently believed?” Pediatrics, 108, No. 5, 1203–1205 (2001).

    Article  CAS  PubMed  Google Scholar 

  2. L. C. Chow, K. W. Wright, and A. Sola, Group COAS, “Can changes in clinical practice decrease the incidence of severe retinopathy of prematurity in very low birth weight infants?” Pediatrics, 111, No. 2, 339–345 (2003).

    Article  PubMed  Google Scholar 

  3. M. P. Collins, J. M. Lorenz, J. R. Jetton, and N. Paneth, “Hypocapnia and other ventilation-related risk factors for cerebral palsy in low birth weight infants,” Pediatr. Res., 50, No. 6, 712–719 (2001).

    Article  CAS  PubMed  Google Scholar 

  4. S. E. Hamrick, S. P. Miller, C. Leonard, et al., “Trends in severe brain injury and neurodevelopmental outcome in premature newborn infants: the role of cystic periventricular leukomalacia,” J. Pediatr., 145, No. 5, 593–599 (2004).

    Article  PubMed  Google Scholar 

  5. U. Felderhoff-Mueser, M. Sifringer, O. Polley, et al., “Caspase-1-processed interleukins in hyperoxia-induced cell death in the developing brain,” Ann. Neurol. 57, No. 1, 50–59 (2005).

    Article  CAS  PubMed  Google Scholar 

  6. B. Koletzko, P. J. Aggett, J. G. Bindels, et al., “Growth, development and differentiation: a functional food science approach,” Br. J. Nutr., 80, Suppl 1, No. 1, 5–45, (1998).

    Article  Google Scholar 

  7. D. M. Ferriero, “Oxidant mechanisms in neonatal hypoxia-ischemia,” Dev. Neurosci., 23, No. 3, 198–202, (2001).

    Article  CAS  PubMed  Google Scholar 

  8. M. V. Johnston, “Excitotoxicity in neonatal hypoxia,” Ment. Retard. Dev. Disabil. Res. Rev., 7, No. 4, 229–234, (2001).

    Article  CAS  PubMed  Google Scholar 

  9. U. Yis, S. H. Kurul, A. Kumral, et al., “Hyperoxic exposure leads to cell death in the developing brain,” Brain Dev., 30, No. 9, 556–562 (2008).

    Article  PubMed  Google Scholar 

  10. J. W. Calvert, W. Yin, M. Patel, et al., “Hyperbaric oxygenation prevented brain injury induced by hypoxia–ischemia in a neonatal rat model,” Brain Res., 951, No. 1, 1–8 (2002).

    Article  CAS  PubMed  Google Scholar 

  11. S.-W. Choi and S. Friso, “Epigenetics: a new bridge between nutrition and health,” Adv. Nutr., 1, No. 1, 8–16, (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. M. Dauncey, “Recent advances in nutrition, genes and brain health,” Proc. Nutr. Soc., 71, No. 4, 581–591, (2012).

    Article  CAS  PubMed  Google Scholar 

  13. Y. Li, L. Gao, X. Luo, et al., “Epigenetic silencing of microRNA-193a contributes to leukemogenesis in t (8; 21) acute myeloid leukemia by activating the PTEN/PI3K signal pathway,” Blood, 121, No. 3, 499–509, (2013).

    Article  CAS  PubMed  Google Scholar 

  14. A. Mehler, “Structural similarities of complex networks: A computational model by example of wiki graphs,” Appl. Artif. Intelli., 22, Nos. 7/8, 619–683 (2008).

    Article  Google Scholar 

  15. E. Borrelli, E. J. Nestler, C. D. Allis, and P. Sassone-Corsi, “Decoding the epigenetic language of neuronal plasticity,” Neuron, 60, No. 6, 961–974 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. J. U. Guo, Y. Su, C. Zhong, et al., “Hydroxylation of 5-methylcytosine by TET1 promotes active DNA demethylation in the adult brain,” Cell, 145, No. 3, 423–434 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. J. Gräff, D. Kim, M. M. Dobbin, and L.-H. Tsai, “Epigenetic regulation of gene expression in physiological and pathological brain processes,” Physiol. Rev., 91, No. 2, 603–649 (2011).

    Article  PubMed  CAS  Google Scholar 

  18. P. J. Gonzalez-Rodriguez, F. Xiong, Y. Li, et al., “Fetal hypoxia increases vulnerability of hypoxic–ischemic brain injury in neonatal rats: role of glucocorticoid receptors,” Neurobiol. Dis., 65, No. 172–179 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. R. C. Vannucci and S. J. Vannucci, “Perinatal hypoxicischemic brain damage: evolution of an animal model,” Dev. Neurosci., 27, Nos. 2/4, 81–86 (2005).

    Article  CAS  PubMed  Google Scholar 

  20. U. Yis, S. H. Kurul, A. Kumral, et al., “Effect of erythropoietin on oxygen-induced brain injury in the newborn rat,” Neurosci. Lett., 448, No. 3, 245–249 (2008).

    Article  CAS  PubMed  Google Scholar 

  21. F. Tuzun, A. Kumral, S. Ozbal, et al., “Maternal prenatal omega-3 fatty acid supplementation attenuates hyperoxia-induced apoptosis in the developing rat brain,” Int. J. Dev. Neurosci., 30, No. 4, 315–323 (2012).

    Article  CAS  PubMed  Google Scholar 

  22. A. Karakas, H. Coskun, A. Kaya, et al., “The effects of the intraamygdalar melatonin injections on the anxiety like behavior and the spatial memory performance in male Wistar rats,” Behav. Brain Res., 222, No. 1, 141–150 (2011).

    Article  CAS  PubMed  Google Scholar 

  23. T. Hoehn, U. Felderhoff-Mueser, K. Maschewski, et al., “Hyperoxia causes inducible nitric oxide synthase-mediated cellular damage to the immature rat brain,” Pediatr. Res., 54, No. 2, 179–184 (2003).

    Article  CAS  PubMed  Google Scholar 

  24. U. Felderhoff-Mueser, P. Bittigau, M. Sifringer, et al., “Oxygen causes cell death in the developing brain,” Neurobiol. Dis., 17, No. 2, 273–282 (2004).

    Article  CAS  PubMed  Google Scholar 

  25. H. J. Rozycki, P. G. Comber, and T. F. Huff, “Cytokines and oxygen radicals after hyperoxia in preterm and term alveolar macrophages,” Am. J. Physiol. Lung Cell. Mol. Physiol., 282, No. 6, 1222–1228 (2002).

    Article  Google Scholar 

  26. B. T. Pierce, P. G. Napolitano, L. M. Pierce, et al., “The effects of hypoxia and hyperoxia on fetal-placental vascular tone and inflammatory cytokine production,” Am. J. Obstet. Gynecol., 185, No. 5, 1068–1072 (2001).

    Article  CAS  PubMed  Google Scholar 

  27. S. M. Allan and N. J. Rothwell, “Cytokines and acute neurodegeneration,” Nat. Rev. Neurosci., 2, No. 10, 734–744 (2001).

    Article  CAS  PubMed  Google Scholar 

  28. E. A. Abdel Ghany, W. Alsharany, A. A. Ali, et al., “Anti-oxidant profiles and markers of oxidative stress in preterm neonates,” Paediatr. Int. Child Health, 36, No. 2, 134–140 (2016).

    Article  PubMed  Google Scholar 

  29. Y. S. Lee and Y. H. Chou, “Antioxidant profiles in full term and preterm neonates,” Chang Gung Med. J., 28, No. 12, 846–851 (2005).

    PubMed  Google Scholar 

  30. F. Spigno, M. De Lucchi, L. Migliazzi, and L. Cocito, “Transient global amnesia after breathing hyperoxic mixtures in otherwise regular dives,” Clin. Neurol. Neurosurg., 110, No. 3, 259–261 (2008).

    Article  PubMed  Google Scholar 

  31. M. Ramani, T. van Groen, I. Kadish, et al., “Neurodevelopmental impairment following neonatal hyperoxia in the mouse,” Neurobiol. Dis., 50, No. 1, 69–75 (2013).

    Article  PubMed  Google Scholar 

  32. D. Hoeber, M. Sifringer, Y. van de Looij, et al., “Erythropoietin restores long-term neurocognitive function involving mechanisms of neuronal plasticity in a model of hyperoxia-induced preterm brain injury,” Oxid. Med. Cell Longev., 2016, No. 9247493 (2016).

  33. G. Brander, M. Rydell, R. Kuja-Halkola, et al., “As-sociation of perinatal risk factors with obsessivecompulsive disorder: a population-based birth cohort, sibling control study,” JAMA Psychiatr., 73, No. 11, 1135–1144 (2016).

    Article  Google Scholar 

  34. A. P. Franz, G. U. Bolat, H. Bolat, et al., “Attentiondeficit/hyperactivity disorder and very preterm/very low birth weight: A meta-analysis” Pediatrics, 141, No. 1, pii: e20171645 (2018).

  35. B. Reich, D. Hoeber, I. Bendix, and U. Felderhoff-Mueser, “Hyperoxia and the immature brain,” Dev. Neurosci., 38, No. 5, 311–330 (2016).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Dilek.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dilek, M., Orallar, H., Cetinkaya, A. et al. Can Excessive Oxygen Cause Hyperactive Behavior Disorder in Preterm Children? Cognitive Effects of Hyperoxia in the Preterm Brain of Rats. Neurophysiology 51, 259–265 (2019). https://doi.org/10.1007/s11062-019-09819-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11062-019-09819-3

Keywords

Navigation