Possible Stochastic Mechanism for Improving the Selectivity of Olfactory Projection Neurons

A possible mechanism that provides increased selectivity of olfactory bulb projection neurons, as compared to that of the primary olfactory receptor neurons, has been proposed. The mechanism operates at low concentrations of the odor molecules, when the lateral inhibition mechanism becomes inefficient. The mechanism proposed is based on a threshold-type reaction to the stimuli received by a projection neuron from a few receptor neurons, the stochastic nature of these stimuli, and the existence of electrical leakage in the projection neurons. The mechanism operates at the level of the single individual projection neuron and does not require the involvement of other bulbar neurons.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    K. J. Ressler, S. L. Sullivan, and L. B. Buck, “Information coding in the olfactory system: evidence for a stereotyped and highly organized epitope map in the olfactory bulb,” Cell, 79, 1245–1255 (1994).

    CAS  PubMed  Article  Google Scholar 

  2. 2.

    V. W. Drongelen, “Unitary recordings of near threshold responses of receptor cells in the olfactory mucosa of the frog,” J. Physiol., 277, No. 1, 423–435 (1978).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  3. 3.

    V. W. Drongelen, A. Holley, and K. B. Døving, “Convergence in the olfactory system: Quantitative aspects of odour sensitivity,” J. Theor. Biol., 71, No. 1, 39–48 (1978).

    PubMed  Article  Google Scholar 

  4. 4.

    P. Duchamp-Viret, A. Duchamp, and M. Vigoroux, “Amplifying role of convergence in olfactory system. A comparative study of receptor cell and second-order neuron sensitivities,” J. Neurophysiol., 61, No. 5, 1085–1094 (1989).

    CAS  PubMed  Article  Google Scholar 

  5. 5.

    A. Duchamp, “Electrophysiological responses of olfactory bulb neurons to odour stimuli in the frog. A comparison with receptor cells,” Chem. Senses,7, No. 2, 191–210 (1982).

    CAS  Article  Google Scholar 

  6. 6.

    S. Kikuta, M. L. Fletcher, R. Homma et al., “Odorant response properties of individual neurons in an olfactory glomerular module,” Neuron, 77, No. 6, 1122–1135 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  7. 7.

    A. P. Davison, J. Feng, and D. Brown, “Dendrodendritic inhibition and simulated odor responses in a detailed olfactory bulb network model,” J. Neurophysiol., 90, No. 3, 1921–1935 (2003).

    CAS  PubMed  Article  Google Scholar 

  8. 8.

    T. A. Cleland and C. Linster, “Computation in the olfactory system,” Chem. Senses, 30, No. 9, 801–813 (2005).

    PubMed  Article  Google Scholar 

  9. 9.

    R. Granit and J. C. Eccles, “Aspects of excitation and inhibition in the retina,” Proc. Roy. Soc. Lond. Ser. B Biol. Sci.,140, No. 899, 191–199 (1952).

    CAS  Article  Google Scholar 

  10. 10.

    H. B. Barlow, “Summation and inhibition in the frog’s retina,” J. Physiol.,119, No. 1, 69–88 (1953).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  11. 11.

    H. K. Hartline, H. G. Wagner, and F. Ratliff, “Inhibition in the eye of Limulus,” J. Gen. Physiol., 39, No. 5, 651–673 (1956).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  12. 12.

    M. Yokoi, K. Mori, and S. Nakanishi, “Refinement of odor molecule tuning by dendrodendritic synaptic inhibition in the olfactory bulb,” Proc. Natl. Acad. Sci. USA,92, No. 8, 3371–3375 (1995).

    CAS  PubMed  Article  Google Scholar 

  13. 13.

    N. N. Urban and B. Sakmann, “Reciprocal intra glomerular excitation and intra- and interglomerular lateral inhibition between mouse olfactory bulb mitral cells,” J. Physiol., 542, No. 2, 355–367 (2002).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  14. 14.

    A. L. Fantana, E. R. Soucy, and M. Meister, “Rat olfactory bulb mitral cells receive sparse glomerular inputs,” Neuron,59, No. 5, 802–814 (2008).

    CAS  PubMed  Article  Google Scholar 

  15. 15.

    M. T. Valley and S. Firestein, “A lateral look at olfactory bulb lateral inhibition,” Neuron,59, No. 5, 682–684 (2008).

    CAS  PubMed  Article  Google Scholar 

  16. 16.

    P. Duchamp-Viret, A. Duchamp, and G. Sicard, “Olfac tory discrimination over a wide concentration range. Compa rison of receptor cell and bulb neuron abilities,” Brain Res., 517, Nos. 1–2, 256-262 (1990).

    CAS  PubMed  Article  Google Scholar 

  17. 17.

    A. K. Vidybida, “Selectivity of chemoreceptor neuron,” BioSystems,58, 125–132 (2000).

    CAS  PubMed  Article  Google Scholar 

  18. 18.

    A. K. Vidybida, A. S. Usenko, and J. P. Rospars, “Selectivity improvement in a model of olfactory receptor neuron with adsorption-desorption noise,” J. Biol. Syst., 16, No. 4, 531–545 (2008).

    CAS  Article  Google Scholar 

  19. 19.

    A. K. Vidybida, “Adsorption–desorption noise can be used for improving selectivity,” Sensors Actuators A:Physical., 107, No. 3, 233–237 (2003).

    CAS  Article  Google Scholar 

  20. 20.

    V. S. Korolyuk, P. G. Kostyuk, B. Ya. Pjatigorskii, and E. P. Tkachenko, “Mathematical model of spontaneous activity of some neurons in the CNS,” Biofizika,12, No. 5, 895–899 (1967).

    Google Scholar 

  21. 21.

    L. F. Abbott, “Lapique’s introduction of the integrateand- fire model neuron (1907),” Brain Res. Bull., 50, Nos. 5/6, 303–304 (1999).

    CAS  PubMed  Article  Google Scholar 

  22. 22.

    L. B. Buck, “The molecular architecture of odor and pheromone sensing in mammals,” Cell,100, No. 6, 611–618 (2000).

    CAS  PubMed  Article  Google Scholar 

  23. 23.

    A. K. Vidybida, Stochastic Models, NAS of Ukraine, BITP, Kyiv (2006).

    Google Scholar 

  24. 24.

    J. N. Bourne and N. E. Schoppa, “Three-dimensional synaptic analyses of mitral cell and external tufted cell dendrites in rat olfactory bulb glomeruli,” J. Comp. Neurol., 525, No. 3, 592–609 (2017).

    CAS  PubMed  Article  Google Scholar 

  25. 25.

    S. D. Burton and N. N. Urban, “Greater excitability and firing irregularity of tufted cells underlies distinct afferent-evoked activity of olfactory bulb mitral and tufted cells,” J. Physiol., 592, No. 10, 2097–2118 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  26. 26.

    J. Tan, A. Savigner, M. Ma, and M. Luo, “Odor information processing by the olfactory bulb analyzed in gene-targeted mice,” Neuron,65, No. 6, 912–926 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  27. 27.

    K. Mori, M. C. Nowycky, and G. M. Shepherd, “Electrophysiological analysis of mitral cells in the isolated turtle olfactory bulb,” J. Physiol., 314, No. 1, 281–294 (1981).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  28. 28.

    R. J. Sayer, M. J. Friedlander, and S. J. Redman, “The time course and amplitude of EPSPs evoked at synapses between pairs of CA3/CA1 neurons in the hippocampal slice,” J. Neurosci., 10, No. 3, 826–836 (1990).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  29. 29.

    A. Duchamp and G. Sicard, “Influence of stimulus intensity on odour discrimination by olfactory bulb neurons as compared with receptor cells,” Chem. Senses,8, No. 4, 355–366 (1984).

    Article  Google Scholar 

  30. 30.

    P. Duchamp-Viret, and A. Duchamp, “Odor processing in the frog olfactory system,” Prog. Neurobiol., 53, No. 5, 561–602 (1997).

    CAS  PubMed  Article  Google Scholar 

  31. 31.

    G. Lowe and G. H. Gold, “Olfactory transduction is intrinsically noisy,” Proc. Natl. Acad. Sci. USA, 92, No. 17, 7864–7868 (1995).

    CAS  PubMed  Article  Google Scholar 

  32. 32.

    J. P. Rospars, P. Lánský, J. Vaillant, et al., “Spontaneous activity of first- and second-order neurons in the frog olfactory system,” Brain Res.,662, Nos. 1–2, 31–44 (1994).

    PubMed  Article  Google Scholar 

  33. 33.

    V. Bhandawat, G. Maimon, M. H. Dickinson, and R. J. Wilson, “Olfactory modulation of flight in Drosophila is sensitive, selective and rapid,” J. Exp. Biol., 213, No. 21, 3625 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  34. 34.

    M. Häusser, N. Spruston, and G. J. Stuart, “Diversity and dynamics of dendritic signaling,” Science,290, No. 5492, 739–744 (2000).

    PubMed  Article  Google Scholar 

  35. 35.

    M. London and M. Häusser, “Dendritic computation,” Ann. Rev. Neurosci., 28, No. 1, 503–532 (2005).

    CAS  PubMed  Article  Google Scholar 

  36. 36.

    J. P. Rospars, A. Grémiaux, D. Jarriault, et al., “Heterogeneity and convergence of olfactory first-order neurons account for the high speed and sensitivity of secondorder neurons,” PLOS Comput. Biol., 10, No. 12 (2014): e1003975.

    PubMed  PubMed Central  Article  Google Scholar 

  37. 37.

    J. P. McGann. Presynaptic inhibition of olfactory sensory neurons: New mechanisms and potential functions,” Chem. Senses,38, No. 6, 459–474 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  38. 38.

    P. M. Lledo, G. Gheusi, and J. D. Vincent, “Information processing in the mammalian olfactory system,” Physiol. Rev., 85, No. 1, 281–317 (2005).

    PubMed  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to A. K. Vidybida.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Vidybida, A.K. Possible Stochastic Mechanism for Improving the Selectivity of Olfactory Projection Neurons. Neurophysiology 51, 152–159 (2019). https://doi.org/10.1007/s11062-019-09808-6

Download citation

Keywords

  • odors
  • olfactory bulb
  • olfactory receptor neurons
  • projection neurons
  • spike activity
  • selectivity
  • stochastic process