Skip to main content
Log in

Activities of the Dopaminergic System and Glutathione Antioxidant System in the Hippocampus of Stressed rats

  • Published:
Neurophysiology Aims and scope

The effects of chronic restraint stress (CRS, 2 h during 14 days) on gene expression of tyrosine hydroxylase (TH), catechol-O-methyltransferase (COMT), and glutathione peroxidase (GPx) were studied in the rat hippocampus. Changes in the dopamine (DA) concentration and activities of monoamine oxidases (MAO A and MAO B) and GPx in this cerebral structure of chronically stressed rats were also examined. The investigated parameters were quantified using real-time RT-PCR, Western blot analyses, and assay of enzymatic activity. We found that CRS decreased the TH protein level and DA concentration, which probably confirms the statement that de novo synthesis of DA is suppressed under stress conditions. The increased activities of MAO B, as well as the increased level of COMT protein, are believed to be related to intensified DA catabolism conditions. Also, a decreased activity of GPx in the hippocampus of chronically stressed animals was found. The increased enzymatic activity of MAO B negatively correlated with the reduced activity of GPx under the above-mentioned stress conditions. These events in the hippocampus of chronically stressed animals could synergistically cause oxidative damage to the mitochondria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. C. Tse, I. Montoya, A. S. Wong, et al., “A longitudinal study of stress-induced hippocampal volume changes in mice that are susceptible or resilient to chronic social defeat,” Hippocampus, 24, 1120-1128 (2014).

    Article  PubMed  Google Scholar 

  2. B. S. McEwen and A. M. Magarinos, “Stress effects on morphology and function of the hippocampus,” Ann. N.Y. Acad. Sci., 821, 271-284 (1997).

    Article  PubMed  CAS  Google Scholar 

  3. Xh Li, Jx Chen, Gx Yue, et al., “Gene expression profile of the hippocampus of rats subjected to chronic immobilization stress,” PLoS One, 8, No. 3, e57621 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. A. Ahmad, N. Rasheed, K. Chand, et al., “Restraint stress-induced central monoaminergic & oxidative changes in rats & their prevention by novel Ocimum sanctum compounds,” Indian J. Med. Res., 135, No. 4, 548-554 (2012).

    PubMed  PubMed Central  Google Scholar 

  5. C. Nunes, R. M. Barbosa, L. Almeida, and J. Laranjinha, “Nitric oxide and DOPAC-induced cell death: from GSH depletion to mitochondrial energy crisis,” Mol. Cell Neurosci., 48, No. 1, 94-103 (2011).

    Article  PubMed  CAS  Google Scholar 

  6. L. Gavrilovic, N. Spasojevic, and S. Dronjak, “Subsequent stress increases gene expression of catecholamine synthetic enzymes in cardiac ventricles of chronic-stressed rats,” Endocrine, 37, 425-429 (2010).

    Article  PubMed  CAS  Google Scholar 

  7. N. Popović, S. B. Pajović, V. Stojiljković, et al., “Prefrontal catecholaminergic turnover and antioxidant defense system of chronically stressed rats,” Folia Biol., 65, No. 1, 43-54 (2017).

    Article  CAS  Google Scholar 

  8. G. D. Gamaro, M. B. Michalowski, D. H. Catelli, et al., “Effect of repeated restraint stress on memory in different tasks,” Braz. J. Med. Biol. Res., 32, No. 3, 341-347 (1999).

    Article  PubMed  CAS  Google Scholar 

  9. K. S. Kim and P. L. Han, “Optimization of chronic stress paradigms using anxiety- and depression-like behavioral parameters,” J. Neurosci. Res., 83, No. 3, 497-507 (2006).

    Article  PubMed  CAS  Google Scholar 

  10. L. Gavrilović, V. Stojiljković, J. Kasapović, et al., “Treadmill exercise does not change gene expression of adrenal catecholamine biosynthetic enzymes in chronically stressed rats,” Ann. Acad. Bras. Cienc., 85, No. 3, 999-1012 (2013).

    Article  Google Scholar 

  11. T. M. Stich, “Determination of protein covalently bound to agarose supports using bicinchoninic acid,” Ann. Biochem., 191, 343-346 (1990).

    Article  CAS  Google Scholar 

  12. U. K. Laemmli, “Cleavage of structural proteins during the assembly of the head of bacteriophage T4,” Nature, 227, 680-685 (1970).

    Article  PubMed  CAS  Google Scholar 

  13. M. Zhou and N. Panchuk-Voloshina, “A one-step fluorometric method for the continuous measurement of monoamine oxidase activity,” Analyt. Biochem., 253, No. 2, 169-174 (1997).

    Article  PubMed  CAS  Google Scholar 

  14. V. Stojiljković, A. Todorović, S. Pejić, et al., “Antioxidant status and lipid peroxidation in small intestinal mucosa of children with celiac disease,” Clin. Biochem., 42, Nos. 13/14, 1431-1437 (2009).

    Article  PubMed  CAS  Google Scholar 

  15. M. Bortolato, K. Chen, and J. C. Shih, “Monoamine oxidase inactivation: from pathophysiology to therapeutics,” Adv. Drug. Deliv. Rev., 60, 1527-1533 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. A. M. Cesura and A. Pletscher, “The new generation of monoamine oxidase inhibitors,” Prog. Drug. Res., 38, 171-297 (1992).

    PubMed  CAS  Google Scholar 

  17. J. Knoll, “(-)Deprenyl (selegiline): past, present and future,” Neurobiology, 8, 179-199 (2000).

    PubMed  CAS  Google Scholar 

  18. T. Müller, “Catechol-O-methyltransferase inhibitors in Parkinson’s disease,” Drugs, 75, No. 2, 157-174 (2015).

    Article  PubMed  CAS  Google Scholar 

  19. V. Nilakantan, X. Zhou, G. Hilton, et al., “Hierarchical change in antioxidant enzyme gene expression and activity in acute cardiac rejection: role of inducible nitric oxide synthase,” Mol. Cell Biochem., 270, Nos. 1/2, 39-47 (2005).

    Article  PubMed  CAS  Google Scholar 

  20. M. Hsu, B. Srinivas, J. Kumar, et al., “Glutathione depletion resulting in selective mitochondrial complex I inhibition in dopaminergic cells is via an NO-mediated pathway not involving peroxynitrite: implications for Parkinson’s disease,” J. Neurochem., 92, 1091-1103 (2005).

    Article  PubMed  CAS  Google Scholar 

  21. J. E. Duda, B. I. Giasson, Q. Chen, et al., “Widespread nitration of pathological inclusions in neurodegenerative synucleinopathies,” Am. J. Pathol., 157, 1439-1445 (2000).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. B. I. Giasson, J. E. Duda, I. V. Murray, et al., “Oxidative damage linked to neurodegeneration by selective alpha-synuclein nitration in synucleinopathy lesions,” Science, 290, 985-989 (2000).

    Article  PubMed  CAS  Google Scholar 

  23. P. Klivenyi, O. A. Andreassen, R. J. Ferrante, et al., “Inhibition of neuronal nitric oxide synthase protects against MPTP toxicity,” NeuroReport, 11, 1265-1268 (2000).

    Article  PubMed  CAS  Google Scholar 

  24. Watanabe Y, Kato H, Araki T, “Protective action of neuronal nitric oxide synthase inhibitor in the MPTP mouse model of Parkinson’s disease,” Metab. Brain Dis., 23, 51-69 (2008).

    Article  PubMed  CAS  Google Scholar 

  25. H. Yokoyama, S. Takagi, Y. Watanabe, et al., “Role of reactive nitrogen and reactive oxygen species against MPTP neurotoxicity in mice,” J. Neural Transm., 115, 831-842 (2008).

    Article  PubMed  CAS  Google Scholar 

  26. T. Alexander, C. E. Sortwell, C. D. Sladek, et al., “Comparison of neurotoxicity following repeated administration of L-dopa, D-dopa and dopamine to embryonic mesencephalic dopamine neurons in cultures derived from Fisher 344 and Sprague–Dawley donors,” Cell Transplant., 6, 309-315 (1997).

    Article  PubMed  CAS  Google Scholar 

  27. F. Filloux and J. J. Townsend, “Pre- and postsynaptic neurotoxic effects of dopamine demonstrated by intrastriatal injection,” Exp. Neurol., 119, 79-88 (1993).

    Article  PubMed  CAS  Google Scholar 

  28. T. G. Hastings, D. A. Lewis, and M. J. Zigmond, “Role of oxidation in the neurotoxic effects of intrastriatal dopamine injections,” Proc. Natl. Acad. Sci. USA, 93, 1956-1961 (1996).

    Article  PubMed  CAS  Google Scholar 

  29. P. P. Michel and F. Hefti, “Toxicity of 6-hydroxydopamine and dopamine for dopaminergic neurons in culture,” J. Neurosci. Res., 26, 428-435 (1990).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Gavrilović.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Popović, N., Pajović, S.B., Stojiljković, V. et al. Activities of the Dopaminergic System and Glutathione Antioxidant System in the Hippocampus of Stressed rats. Neurophysiology 50, 332–338 (2018). https://doi.org/10.1007/s11062-019-09758-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11062-019-09758-z

Keywords

Navigation