Skip to main content

Advertisement

Log in

Combined Effects of Donepezil and Lovastatin on Cognition Deficit Induced by Bilateral Lesion of the Nucl. Basalis Magnocellularis in a Rat Model of Alzheimer’s Disease

  • Published:
Neurophysiology Aims and scope

Donepezil is the common standard symptomatic treatment for mild-to-moderate Alzheimer’s disease (AD) patients, but it showed only moderate efficacy and also emergence tolerance. To conquer this shortcoming, combinations of several drugs are widely used. Statins, competitive inhibitors of 3-hydroxy-3-methylglutaryl coenzyme A reductase, are commonly prescribed drugs for the treatment of hypercholesterolemia. Growing evidence demonstrated that this class of medicines exerts neuroprotective effects in neurological disorders, including AD. We have examined whether co-administration of lovastatin with donepezil provides a synergistic cognition-improving effect in an animal model of AD. In rats with the bilaterally lesioned nucl. basalis magnocellularis (NBM), lovastatin (20 mg/kg) and donepezil (10 mg/kg), when administered separately, noticeably improved working and reference memory tests in the radial maze, compared to the NBM lesioned group with no treatment but not with lower doses. Combined administration of subtherapeutic doses of lovastatin (1.0 mg/kg) and donepezil (0.1 mg/kg), which exerted no discernible effects on performance when given alone, significantly improved working and reference memory, indicating a synergistic cognitionimproving effect. This result suggests that a low dose of lovastatin potentiates the effect of an inactivedose of donepezil on cognitive impairment, and that the synergistic effect may be mediated through increases in the choline acetyltransferase activity and ACh level to compensate the cholinergic deficit in the rat model of Alzheimer’s disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Dumont and M. F. Beal, “Neuroprotective strategies involving ROS in Alzheimer disease,” Free Radic. Biol. Med., 51, No. 5, 1014-1026 (2011).

    Article  PubMed  CAS  Google Scholar 

  2. J. McGaughy, M. W. Decker, and M. Sarter, “Enhancement of sustained attention performance by the nicotinic acetylcholine receptor agonist ABT-418 in intact but not basal forebrain-lesioned rats,” Psychopharmacology (Berl.), 144, No. 2, 175-182 (1999).

    Article  CAS  Google Scholar 

  3. M. Khanmohamadi, D. D. Farhud, and M. Malmir, “Genetic of Alzheimer’s disease: A narrative review article,” Iran J. Public. Health, 44, No. 7, 892-901(2015).

    Google Scholar 

  4. M. Zahedi, M. R. Hojjati, H. Fathpour, et al., “Effect of Rheum ribes hydro-alcoholic extract on memory impairments in rat model of Alzheimer’s disease,” Iran. J. Pharm. Res., 14, No. 4, 1197-1206 (2015).

    PubMed  PubMed Central  CAS  Google Scholar 

  5. S. Easton, A. Sankaranarayanan, A. Tanghe, et al., “Effects of sub-chronic donepezil on brain Aβ and cognition in a mouse model of Alzheimer’s disease,” Psychopharmacology (Berl.), 230, No. 2, 279-289 (2013).

    Article  CAS  Google Scholar 

  6. N. A. Kapai, J. V. Bukanova, E. I. Solntseva, and V. G. Skrebitsky, “Donepezil in a narrow concentration range augments control and impaired by beta-amyloid peptide hippocampal LTP in NMDA-independent manner,” Cell. Mol. Neurobiol., 32, No. 2, 219-226 (2012).

    Article  PubMed  CAS  Google Scholar 

  7. M. J. Grothe, C. Schuster, F. Bauer, et al., “Atrophy of the cholinergic basal forebrain in dementia with Lewy bodies and Alzheimer’s disease dementia,” J. Neurol., 261, No. 10, 1939–1948 (2014).

    Article  PubMed  Google Scholar 

  8. D. Cutuli, F. Foti, L. Mandolesi, et al., “Cognitive performance of cholinergically depleted rats following chronic donepezil administration,” J. Alzheimers Dis., 17, No. 1, 161-176 (2009).

    Article  PubMed  CAS  Google Scholar 

  9. M. A. Raghanti, G. Simic, S. Watson, et al., “Comparative analysis of the nucleus basalis of Meynert among primates,” Neuroscience, 184, 1-15 (2011).

    Article  PubMed  CAS  Google Scholar 

  10. A. Contestabile, E. Ciani, and A. Contestabile, “The place of choline acetyltransferase activity measurement in the “cholinergic hypothesis” of neurodegenerative diseases,” Neurochem. Res., 33, No. 2, 318-327(2008).

    Google Scholar 

  11. M. Paleja, T. A. Girard, K. A. Herdman, and B. K. Christensen, “Two distinct neural networks functionally connected to the human hippocampus during pattern separation tasks,” Brain Cognit., 92, 101-111 (2014).

    Article  Google Scholar 

  12. W. Peng, J. Yang, B. Yang, et al., “Impact of statins on cognitive deficits in adult male rodents after traumatic brain injury: a systematic review,” Biomed. Res. Int., 13 (2014), doi: https://doi.org/10.1155/2014/261409.

  13. A. M. Dolga, I. M. Nijholt, A. Ostroveanu, et al., “Lovastatin induces neuroprotection through tumor necrosis factor receptor 2 signaling pathway,” J. Alzheimers Dis., 13, No. 2, 111-122(2008).

    Google Scholar 

  14. A. Mendoza-Oliva, P. Ferrera, J. Fragoso-Medina, and C. Airas, “Lovastatin differentially affects neuronal cholesterol and amyloid-β production in vivo and in vitro,” CNS. Neurosci. Ther., 21, No. 8, 631-641 (2015).

    Article  PubMed  CAS  Google Scholar 

  15. A. M. Dolga, I. Granic , I. M. Nijholt, et al., “Pretreatment with lovastatin prevents N-methyl-D-aspartate-induced neurodegeneration in the magnocellular nucleus basalis and behavioral dysfunction,” J. Alzheimers Dis., 17, No. 2, 327-336 (2009).

    Article  PubMed  CAS  Google Scholar 

  16. R. Li, D. E. Xu, and T. Ma, “Lovastatin suppresses the aberrant tau phosphorylation from FTDP-17 mutation and okadaic acid-induction in rat primary neurons,” Neuroscience, 294, 14-20 (2009).

    Article  CAS  Google Scholar 

  17. G. Chen, S. Zhang, J. Shi, et al., “Simvastatin reduces secondary brain injury caused by cortical contusion in rats: possible involvement of TLR4/ NF-кβ pathway,” Exper. Neurol., 216, No. 2, 398-406 (2009).

  18. N.B. Chauhan and R. Gatto, “Restoration of cognitive deficits after statin feeding in TBI,” Restor. Neurol. Neurosci., 29, No. 1, 23-34 (2011).

    PubMed  CAS  Google Scholar 

  19. J.-Q. Yan, Y.-J. Ma, J.-Ch. Sun, et al., “Neuroprotective effect of lovastatin by inhibiting NMDA receptor1 in 6-hydroxydopamine treated PC12 cells,” Int. J. Clin. Exp. Med., 7, No. 10, 3313-3319 (2014).

  20. S. F. Chen, T. H. Hung, C. C. Chen, et al., “Lovastatin improves histological and functional outcomes and reduces inflammation after experimental traumatic brain injury,” Life Sci.,81, No. 4, 288-298 (2007).

    Article  PubMed  CAS  Google Scholar 

  21. S. Ashkavandi, A. A. Moazedi, S. Semnanian, et al., “Effects of GM1 ganglioside on the recovery of spatial learning after a lesion of the nucleus basalis magnocellularis in an experimental model of Alzheimer’s disease in adult male rats, ” Amer. J. Med. Medic. Sci., 5, No.1, 42-47 (2015).

    Google Scholar 

  22. Z. Rabiei, M. Rafieian-Kopaei, E. Heidarian, et al., “Effects of Zizyphus jujube extract on memory and learning impairment induced by bilateral electric lesions of the nucleus basalis of Meynert in rat,” Neurochem. Res., 39, No. 2, 353–360 (2014).

  23. C. P. Davis, L. M. Franklin, G. S. Johnson, and L. M. Schrott, “Prenatal oxycodone exposure impairs spatial learning and/or memory in rats,” Behav. Brain Res., 212, No. 1, 27-34 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. J. Gratwicke, J. Kahan, L. Zrinzo, et al., “The nucleus basalis of Meynert: a new target for deep brain stimulation in dementia?,” Neurosci. Biobehav. Rev., 37, No. 10 Pt 2, 2676-2688 (2013).

    Article  PubMed  Google Scholar 

  25. Y. Yamaguchi, M. Higashi, T. Matsuno, and S. Kawashima, “Ameliorative effects of azaindolizinone derivative ZSET845 on scopolamine-induced deficits in passive avoidance and radial arm maze learning in the rat,” Jpn. J. Pharmacol., 87, No. 3, 240–244 (2001).

    Article  PubMed  CAS  Google Scholar 

  26. M. D. Lindner, J. B. Hogan, D. B. Hodges Jr., et al., “Donepezil primarily attenuates scopolamine-induced deficits in psychomotor function, with moderate effects on simple conditioning and attention, and small effects on working memory and spatial mapping,” Psychopharmacology (Berl.), 188, No. 4, 629-640 (2006).

    Article  CAS  Google Scholar 

  27. K. S. Kroker, G. Rast, R. Giovannini, et al., “Inhibition of acetylcholinesterase and phosphodiesterase-9A has differential effects on hippocampal early and late LTP,” Neuropharmacology, 62, Nos. 5–6, 1964-1974(2012).

    Article  PubMed  CAS  Google Scholar 

  28. Q. Wang, J. Yan, X. Chen, et al., “Statins: multiple neuroprotective mechanisms in neurodegenerative diseases,” Exp. Neurol., 230, No. 1, 27-34 (2011).

    Article  PubMed  CAS  Google Scholar 

  29. P. J. Van der Most, A. M. Dolga, I. M. Nijholt, et al., “Statins: mechanism of neuroprotection,” Prog. Neurobiol., 88, No. 1, 64-75 (2009).

    Article  PubMed  CAS  Google Scholar 

  30. R. A. Mans, N. Chowdhury, D. Cao, et al., “Simvastatin enhances hippocampal long-potentiation in C57BL/6 mice,” Neuroscience, 166, No. 2, 435-444 (2010).

    Article  PubMed  CAS  Google Scholar 

  31. N. F. Ho, S. D. Han, and G. S. Dawe, “Effect of voluntary running on adult hippocampal neurogenesis in cholinergic lesioned mice,” BMC Neuroscience, 10:57 (2009), doi: https://doi.org/10.1186/1471-2202-10-5.

  32. Z. Zhao, S. Zhao, N. Xu, et al., “Lovastatin improves neurological outcome after neucleus basalis magnocellularis lesion in rats,”Neuroscience, 167, No. 3, 954-963 (2010).

    Article  PubMed  CAS  Google Scholar 

  33. A. Coccamo, A. Fisher, and F. M. LaFerla, “M1 agonists as a potential disease-modifying therapy for Alzheimer’s disease,” Curr. Alzheimer Res.,6, No. 2, 112-117(2009).

    Article  Google Scholar 

  34. G. Yamin, “NMDA receptor-dependent signaling pathways that underlie amyloid beta protein disruption of LTP in the hippocampus,” J. Neurosci. Res., 87, No. 8, 1729-1736 (2009).

    Article  PubMed  CAS  Google Scholar 

  35. T. Freret, V. Bouet, A. Quiedeville , et al., “Synergistic effect of acetylcholinesterase inhibition (donepezil) and 5-HT(4) receptor activation (RS67333) on object recognition in mice,” Behav. Brain Res., 230, No.1, 304-308 (2012).

    Article  PubMed  CAS  Google Scholar 

  36. H. Tsunekawa, Y. Noda, A. Mouri, et al., “Synergistic effects of selegiline and donepezil on cognitive impairment induced by amyloid beta (25-35),” Behav. Brain Res., 190, No. 2, 224-32 (2008).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Eskandary.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eskandary, A., Moazedi, A.A., Najaph zade varzi, H. et al. Combined Effects of Donepezil and Lovastatin on Cognition Deficit Induced by Bilateral Lesion of the Nucl. Basalis Magnocellularis in a Rat Model of Alzheimer’s Disease. Neurophysiology 50, 99–107 (2018). https://doi.org/10.1007/s11062-018-9723-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11062-018-9723-5

Keywords

Navigation