Advertisement

Neurophysiology

, Volume 49, Issue 6, pp 441–452 | Cite as

Effects of Aging and Background Babble Noise on Speech Perception Processing: An fMRI Study

  • H. A. Manan
  • A. N. Yusoff
  • E. A. Franz
  • S. Z.-M. S. Mukari
Article
  • 29 Downloads

Speech perception processing in a noisy environment is subjected to age-related decline. We used functional magnetic resonance imaging (fMRI) to examine cortical activation associated with such processing across four groups of participants with age ranges of 23–29, 30–37, 41–47 and 50–65 years old. All participants performed a forward repeat task in quiet environment (SQ) and in the presence of multi-talker babble noise (SN; 5-dB signal-to-noise ratio, SNR). Behavioral test results demonstrated a decrease in the performance accuracy associated with increasing age for both SQ and SN. However, a significant difference in the performance accuracy between these conditions could only be seen among the elderly (60–65 years old) subjects. The fMRI results across the four age groups showed a nearly similar pattern of brain activation in the auditory, speech, and attention areas during SQ and SN. Comparisons between SQ and SN demonstrated significantly lower brain activation in the left precentral gyrus, left postcentral gyrus, left Heschly’s gyrus, and right middle temporal gyrus under the latter condition. Other activated brain areas showed no significant differences in brain activation between SQ and SN. The decreases in cortical activation in the activated regions positively correlated with the decrease in the behavioral performance across age groups. These findings are discussed based on a dedifferentiation hypothesis that states that increased brain activation among older participants, as compared to young participants, is due to the age-related deficits in neural communication.

Keywords

speech perception fMRI aging background babble noise speech stimuli dedifferentiation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. S. Martin, M. A. James, and J. F. Jerger, “Some effects of aging on central auditory processing,” J. Rehab. Res. Develop., 42, No. 2, 25-44 (2005).CrossRefGoogle Scholar
  2. 2.
    C. M. P. Wong, J. X. Jin, G. M. Gunasekera, et al., “Aging and cortical mechanism in speech perception in noise,” Neuropsychology, 47, 693-703 (2009).CrossRefGoogle Scholar
  3. 3.
    R. J. Salvi, A. H. Lockwood, R. D. Frisina, et al., “PET imaging of the normal human auditory system: responses to speech in quiet and in background noise,” Hearing Res., 170, 96-106 (2002).CrossRefGoogle Scholar
  4. 4.
    J. Walton, H. Simon, and R. D. Frisina, “Age-related alteration in the neural coding of envelope periodicities,” J. Neurophysiol., 88, 565-578 (2002).CrossRefPubMedGoogle Scholar
  5. 5.
    T. Shimizu, K. Makishima, M. Yoshida, and H. Yamaghisi, “Effects of background noise of English speech for japanese listeners,” Auris Nasus Larynx, 29, 121-125 (2002).CrossRefPubMedGoogle Scholar
  6. 6.
    R. Cabeza, “Hemispheric asymmetry reduction in older adults: the Harold Model,” Psychol. Aging, 17, 85-100 (2002).CrossRefPubMedGoogle Scholar
  7. 7.
    R. Cabeza, N. D. Anderson, J. K. Locantore, and A. R. McIntosh, “Aging gracefully: compensatory brain activity in high-performing older adults,” NeuroImage, 17, 1394-1402 (2002).CrossRefPubMedGoogle Scholar
  8. 8.
    K. Z. H. Li and U. Lindenberger, “Relations between aging sensory/sensorimotor and cognitive functions,” Neurosci. Biobehav. Rev., 26, No. 7, 777-783 (2002).CrossRefPubMedGoogle Scholar
  9. 9.
    D. C. Park and A. H. Gutchess, “Aging, cognition, and culture: a neuroscientific perspective,” Neurosci. Biobehav. Rev., 26, 859-867 (2002).CrossRefPubMedGoogle Scholar
  10. 10.
    J. D. Schmahmann and D. N. Pandya, “Disconnection syndromes of basal ganglia, thalamus, and cerebrocerebellar systems,” Cortex, 44, No. 8, 1037-1066 (2008).CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    M. Mather and L. L. Carstensen, “Aging and motivated cognition: the positivity effect in attention and memory,” Trends Cogn. Sci., 9, 296-502 (2005).CrossRefGoogle Scholar
  12. 12.
    P. A. Reuter-Lorenz, J. Jonides, E. E. Smith, et al., “Age differences in the frontal lateralization of verbal and spatial working memory revealed by PET,” J. Cogn. Neurosci., 12, 174-187 (2000).CrossRefPubMedGoogle Scholar
  13. 13.
    C. L. Grady, “Introduction to the special section on aging, cognition, and neuroimaging,” Psychol. Aging, 17, 3-6 (2002).CrossRefPubMedGoogle Scholar
  14. 14.
    C. L. Grady, A. R. McIntosh, S. Beig, et al., “Evidence from functional neuroimaging of a compensatory prefrontal network in Alzheimer’s disease,” J. Neurosci., 23, 986-993 (2003).PubMedGoogle Scholar
  15. 15.
    P. A. Reuter-Lorenz and C. Lustig, “Brain aging: reorganizing discoveries about the aging mind,” Current Opin. Neurobiol., 15, 245-251 (2005).CrossRefGoogle Scholar
  16. 16.
    R. Cabeza, S. M. Daselaar, F. Dolcos, et al., “Task independence and task specific age effects on brain activity during working memory, visual attention and episodic retrieval,” Cerebr. Cortex, 14, No. 4, 364-375 (2004).CrossRefGoogle Scholar
  17. 17.
    R. C. Oldfield, “The assessment and analysis of handedness: the Edinburgh inventory,” Neuropsychologia, 9, 97-113 (1971).CrossRefPubMedGoogle Scholar
  18. 18.
    H. A. Manan, A. N. Yusoff, E. A. Franz, and S. Z.-M. S. Mukari, “The effects of background noise on brain activity using speech stimuli on healthy young adults,” Neurol. Psychiat. Brain Res., 19, 180-191 (2013).CrossRefGoogle Scholar
  19. 19.
    M. F. Folstein, S. E. Folstein, and P. R. McHugh, “Mini-mental state. A practical method for grading the cognitive state of patient for clinician,” J. Psychiat. Res., 12, 189-198 (1975).CrossRefPubMedGoogle Scholar
  20. 20.
    C. W. Turner, B. J. Kwon, C. Tanaka, et al., “Frequencyweighting functions for broadband speech as estimated by a correlational method,” J. Acoust. Soc. Am., 104, No. 3, 1580-1585.Google Scholar
  21. 21.
    H. A. Manan, E. A. Franz, A. N. Yusoff, and S. Z.-M. S. Mukari, “Age-related brain activation during forward and backward verbal memory repeat tasks,” Neurol. Psychiat. Brain Res., 20, No. 4, 76-86 (2014).CrossRefGoogle Scholar
  22. 22.
    H. A. Manan, E. A. Franz, A. N. Yusoff, and S. Z.-M. S. Mukari, “The effects of aging on the brain activation pattern during speech stimuli task: an fMRI study,” Aging Clin. Exp. Res., 27, No. 1, 27-36 (2015).CrossRefPubMedGoogle Scholar
  23. 23.
    H. A. Manan, E. A. Franz, A. N. Yusoff, and S. Z.-M. S. Mukari, “The effects of aging to a frontoparietal network and its impact on cognitive aging during backward repeat task,” Neurol. Psychiat. Brain Res., 21, No. 1, 64-72 (2015).CrossRefGoogle Scholar
  24. 24.
    H. A. Manan, E. A. Franz, A. N. Yusoff, and S. Z.-M. S. Mukari, “Hippocampal-cerebellar involvement in enhancement of performance in word-based BRT with the presence of background noise: an initial fMRI study,” Psychol. Neurosci., 5, No. 2, 247-256 (2012), doi:  https://doi.org/10.3922/j.psns.2012.2.16.CrossRefGoogle Scholar
  25. 25.
    H. A. Manan, E. A. Franz, A. N. Yusoff, and S. Z.-M. S. Mukari, “Age-related laterality shifts in auditory and attention networks with normal ageing: Effects on a working memory task,” Neurol. Psychiat. Brain Res., 19, 207-215 (2013).CrossRefGoogle Scholar
  26. 26.
    D. A. Hall, M. P. Haggard, M. A. Akeroyd, et al., “Sparse” temporal sampling in auditory fMRI,” Human Brain Mapp., 7, No. 3, 213-223 (1999).Google Scholar
  27. 27.
    A. N. Yusoff, M. M. Ayob, M. H. Hashim, and M. I. Kassim, “Analisis data pengimejan resonans magnet kefungsian pra pemprosesan ruang menggunakan kaedah pemetaan statistik ber parameter,” J. Sains Kesihatan Malaysia, 4, No. 1, 21-36 (2006).Google Scholar
  28. 28.
    A. N. Yusoff, M. Mohamad, M. M. Ayob, and M. H. Hashim, “Brain activations evoked by passive and active listening: A preliminary study on multiple subjects (Pengaktifan otak yang dicetus oleh pendengaran pasif dan aktif: Satukajian permulaan keatas subjek berbilang),” J. Sains Kesihatan Malaysia, 6, No. 1, 35-60 (2008).Google Scholar
  29. 29.
    A. N. Yusoff, M. Mohamad, K. Abdul Hamid, et al., “Characteristics of the primary motor (M1) and supplementary motor (SMA) areas during robust unilateral finger tapping task,” J. Sains Kesihatan Malaysia, 8, No. 2, 43-49 (2010).Google Scholar
  30. 30.
    A. N. Yusoff, “Kesan day a dan laju tepikan jari ke atas pengaktifan korteks berkaitan motor,” J. Sains Kesihatan Malaysia, 11, No. 2, 41-49 (2013).Google Scholar
  31. 31.
    J. A. Maldjian, P. J. Laurienti, R. A. Kraft, and J. H. Burdette, “An automated method for neuroanatomic and cytoarchitectonical tas-based interrogation of fMRI data sets,” NeuroImage, 19, 1233-1239 (2003).CrossRefPubMedGoogle Scholar
  32. 32.
    T. Kujala and E. Brattico, “Detrimental noise effects on brain’s speech functions,” Biol. Psychol., 81, 135-143 (2009).CrossRefPubMedGoogle Scholar
  33. 33.
    T. Kujala, Y. Shtyrov, I. Winkler, et al., “Long-term exposure to noise impairs cortical sound processing and attention control,” Psychophysiology, 41, 875-881 (2004).CrossRefPubMedGoogle Scholar
  34. 34.
    M. C. Stevens, V. D. Calhoun, and K. A. Kiehl, “Hemispheric differences in hemodynamics elicited by auditory oddball stimuli,” NeuroImage, 26, No. 3, 782-792 (2005).CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    M. I. Posner and S. E. Petersen, “The attention system of the human brain,” Annu. Rev. Neurosci., 13, 25-42 (1990).CrossRefPubMedGoogle Scholar
  36. 36.
    R. Cabeza and N. A. Dennis, “Frontal lobes and aging; Deterioration and compensation,” in: Principles of Frontal Lobe Function, D. T. Stuss and R. T. Knight (eds.), Oxford Univ. Press, New York (2012), pp. 628-652.Google Scholar
  37. 37.
    S. Lim, C. E. Han, P. J. Uhlhaas, and M. Kaiser, “Preferential detachment during human brain development: Age- and sex-specific structural connectivity in diffusion tensor imaging (DTI) data,” Cerebr. Cortex, First published online: December 15, 2013, doi:  https://doi.org/10.1093/cercor/bht33.
  38. 38.
    K. J. Anstey, M. A. Luszcz, and L. Sanchez, “A reevaluation of the common factor theory of shared variance among age, sensory function, and cognitive function in older adults,” J. Gerontol. Psychol. Sci., Ser. B, 56, No. 1, 3-11 (2001).CrossRefGoogle Scholar
  39. 39.
    S. C. Li and U. Lindenberger. “Cross-level unification: a computational exploration of the link between deterioration of neurotransmitter systems and dedifferentiation of cognitive abilities in old age,” in: Cogn. Neurosci. Memory, Hogrefe and Huber, Berlin (1999).Google Scholar
  40. 40.
    T. A. Salthouse, “The processing-speed theory of adult age differences in cognition,” Psychol. Rev., 103, 403-428 (1996).CrossRefPubMedGoogle Scholar
  41. 41.
    G. Hickok and D. Poeppel, “The cortical organization of speech processing,” Nat. Rev. Neurosci., 8, No. 5, 393-402 (2007).CrossRefPubMedGoogle Scholar
  42. 42.
    A. H. Lockwood, R. J. Salvi, M. L. Coad, et al., “The functional anatomy of the normal human auditory system: Responses to 0.5 and 4.0 kHz tones at varied intensities,” Cerebr. Cortex, 9, 65-76 (1999).CrossRefGoogle Scholar
  43. 43.
    R. H. Benedict, A. H. Lookwood, J. L. Shucard, et al., “Functional neuroimaging of attention in auditory modality,” NeuroReport, 9, 121-126 (1998).CrossRefPubMedGoogle Scholar
  44. 44.
    D. Moss, L. M. Ward, and W. G. Sannita, “Stochastic resonance and sensory information processing: A tutorial and review of application,” Clin. Neurophysiol., 115, 267-281 (2004).CrossRefPubMedGoogle Scholar
  45. 45.
    D. Rousseau and F. Chapeau-Blondeau, “Suprathreshold stochastic resonance and signal-to-noise ratio improvement in arrays of comparators,” Phys. Lett., 321, 280-290 (2004).CrossRefGoogle Scholar
  46. 46.
    Y. Yamamoto, I. Hidaka, D. Nozaki, et al., “Noiseinduced sensitization of human brain,” Physica A, 314, 53-60 (2002).CrossRefGoogle Scholar
  47. 47.
    D. R. Frisina and R. D. Frisina, “Speech recognition in noise and presbycusis: Relations to possible neural mechanism,” Hear. Res., 106, Nos. 1/2, 95-104 (1997).CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • H. A. Manan
    • 1
    • 2
    • 3
  • A. N. Yusoff
    • 1
  • E. A. Franz
    • 4
  • S. Z.-M. S. Mukari
    • 5
  1. 1.School of Diagnostic and Applied Health Sciences, Faculty of Health SciencesUniversiti KebangsaanKuala LumpurMalaysia
  2. 2.Center of Neuroscience Services and Research (P3Neuro)Universiti Sains MalaysiaKubang KerianMalaysia
  3. 3.Makmal Pemprosesan Imej Kefungsian, Department of RadiologyPusat Perubatan Universiti Kebangsaan MalaysiaKuala LumpurMalaysia
  4. 4.Department of Psychology and fMRIUniversity of OtagoDunedinNew Zealand
  5. 5.School of Rehabilitation Sciences, Faculty of Health SciencesUniversiti Kebangsaan MalaysiaKuala LumpurMalaysia

Personalised recommendations