, Volume 49, Issue 6, pp 432–440 | Cite as

EEG Differences Between Eyes-Closed and Eyes-Open Conditions at the Resting Stage for Euthymic Participants

  • D. P. X. Kan
  • P. E. Croarkin
  • C. K. Phang
  • P. F. Lee

Most prior research examined differences in the EEG frequency bands between eyes-closed and eyesopen conditions at the resting state as a baseline; without counter checking on the mental health state of the subjects; the depressive symptoms were often not assessed or controlled during the experiment. We examined EEGs of euthymic participants (who were free from the psychiaric symptoms) for the above two conditions at the resting state. A population of participants with healthy levels of depression, anxiety, and stress symptoms (n = 50) has been examined with the Patient Health Questionnaire-9 (PHQ-9) and Depression Anxiety Stress Scale-21 (DASS-21). The powers of the alpha rhythm, interpreted as relaxation waves, were higher during eyes-closed compared to eyes-open condition (P = 0.0…) in all brain regions (32 EEG channels). The prefrontal cortex was characterized by higher delta, theta, and beta powers during eyes-open periods at the resting state, as compared with eyes-closed ones.


EEG eyes-open eyes-closed conditions euthymic subjects baseline EEG frequency bands 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. U. Berger, “Ber das Elektrenkephalogramm des Menschen,” Arch. F. Psychiat., 98, 231-254 (1993).CrossRefGoogle Scholar
  2. 2.
    E. D. Adrian and B. H. C. Matthews, “The Berger rhythm: potential changes from the occipital lobes in man,” Brain, 57, 355-385 (1934).CrossRefGoogle Scholar
  3. 3.
    H. H. Jasper, “Cortical excitatory state and variability in human brain rhythms,” Science, 83, 259-260 (1936).CrossRefPubMedGoogle Scholar
  4. 4.
    J. R. Smith, “The electroencephalogram during normal infancy and childhood: II. The nature of the growth of the alpha waves,” J. Gen. Psychol., 53, 455-469 (1938).Google Scholar
  5. 5.
    R. M. Chapman, J. C. Armington, and H. R. Bragdon, “A quantitative survey of kappa and alpha EEG activity,” Electroencephalogr. Clin. Neurophysiol., 14, 858-868 (1962).CrossRefPubMedGoogle Scholar
  6. 6.
    J. Volavka, M. Matoušek, and J. Roubíček, “Mental arithmetic and eye opening. An EEG frequency analysis and GSR study,” Electroencephalogr. Clin. Neurophysiol., 22, 174-176 (1967).CrossRefPubMedGoogle Scholar
  7. 7.
    H. Legewie, O. Simonova, and O. D. Creutzfeldt, “EEG changes during performance of various tasks under open and closed eyes conditions,” Electroencephalogr. Clin. Neurophysiol., 27, 470-479 (1969).CrossRefPubMedGoogle Scholar
  8. 8.
    A. Glass and A. E. Kwiatkowski, “Power spectral density changes in the EEG during mental arithmetic and eyeopening,” Psychol. Forsch., 33, 85-90 (1970).CrossRefPubMedGoogle Scholar
  9. 9.
    A. Gale, M. Coles, and E. Boyd, “Variation in visual input and the occipital EEG,” II. Psychon. Sci., 23, 99-100 (1971).CrossRefGoogle Scholar
  10. 10.
    W. Hardle, T. Gasser, and P. Bacher, EEG responsiveness to eye opening and closing in mildy retarded children compared to a control group,” Biol. Psychol., 18, 185-199 (1984).CrossRefPubMedGoogle Scholar
  11. 11.
    R. J. Barry, A. R. Clarke, S. J. Johnstone, and C. R. Brown, “EEG differences between eyes-closed and eyes-open resting conditions,” Clin. Neurophysiol., 118, 2765-2773 (2007), doi: Scholar
  12. 12.
    R. J. Barry, A. R. Clarke, S. J. Johnstone, and C. R. Brown, “EEG differences in children between eyes-closed and eyes-open resting conditions,” Clin. Neurophysiol., Offic. J. Int. Fed. Clin. Neurophysiol., 120, No. 10, 1806-1811 (2009), doi: Scholar
  13. 13.
    S. Galderisi, A. Mucci, P. Bucci, et al., “Quantitative EEG test dose procedure in the prediction of response to treatment with antipsychotic drugs,” Psychiat. Res. NeuroImaging, 68, 162-163 (1997).CrossRefGoogle Scholar
  14. 14.
    J. R. Hughes and E. R. John, “Conventional and quantitative electroencephalography in psychiatry,” J. Neuropsychiat. Clin. Neurosci., 11, 190-208 (1999).CrossRefGoogle Scholar
  15. 15.
    J. B. Henriques and R. J. Davidson, “Left frontal hypoactivation in depression,” J. Abnorm. Psychol., 100, No. 4, 535-545 (1991).CrossRefPubMedGoogle Scholar
  16. 16.
    S. Debener, A. Beauducel, D. Nessler, et al., “Is resting anterior EEG alpha asymmetry a trait marker for depression? Findings for healthy adults and clinically depressed patients,” Neuropsychobiology, 41, 31-37 (2000).CrossRefPubMedGoogle Scholar
  17. 17.
    V. Knott, C. Mahoney, S. Kennedy, and K. Evans, “EEG power, frequency, asymmetry and coherence in male depression,” Psychiat. Res., 106, 123-140 (2001).CrossRefGoogle Scholar
  18. 18.
    J. J. B. Allen, H. L. Urry, S. K. Hitt, and J. A. Coan, “The stability of resting frontal electroencephalographic asymmetry in depression,” Psychophysiology, 41, 269-280 (2004).CrossRefPubMedGoogle Scholar
  19. 19.
    M. Vuga, N. A. Fox, J. F. Cohn, et al., “Long-term stability of frontal electroencephalographic asymmetry in adults with a history of depression and controls,” Int. J. Psychophysiol., 59, 107-115 (2006).CrossRefPubMedGoogle Scholar
  20. 20.
    A. H. Kemp, K. Griffiths, K. L. Felmingham, et al., “Disorder specificity despite comorbidity: Resting EEG alpha asymmetry in major depressive disorder and posttraumatic stress disorder,” Biol. Psychol., 85, No. 2, 350-354 (2010), doi: Scholar
  21. 21.
    A. A. Fingelkurts, H. Rytsälä, K. Suominen, et al., “Composition of brain oscillations in ongoing EEG during major depression disorder,” Neurosci. Res., 56, No. 2, 133-144 (2006), doi: Scholar
  22. 22.
    D. Begic, V. Popovi, J. Grubi, et al., “Quantitative electroencephalography,” Psychiat. Danubina, 23, No. 4, 355-362 (2011).Google Scholar
  23. 23.
    A. C. N. Chen, W. Feng, H. Zhao, et al., “EEG default mode network in the human brain: Spectral regional field powers,” NeuroImage, 41, 561-574 (2008).CrossRefPubMedGoogle Scholar
  24. 24.
    S. M. El-Badri, C. H. Ashton, P. B. Moore, et al., “Electrophysiological and cognitive function in young euthymic patients with bipolar affective disorder,” Bipolar Disord., 3, No. 2, 79-87 (2001).CrossRefPubMedGoogle Scholar
  25. 25.
    K. Kroenke, R. L. Spitzer, and J. B. W. Williams, “The PHQ-9. Validity of a brief depression severity measure,” J. Gen. Int. Med., 16, 606-613 (2001).CrossRefGoogle Scholar
  26. 26.
    J. R. Crawford and J. D. Henry, “The depression anxiety stress scales (DASS): Normative data and latent structure in a large non-clinical sample,” Br. J. Clin. Psychol., 42, 111-131 (2003).CrossRefPubMedGoogle Scholar
  27. 27.
    F. Mukhtar and T. P. S. Oei, “A review on assessment and treatment for depression in Malaysia,” Depress. Res. Treatment, 1-8 (2011), doi:10.1155/2011/123642.Google Scholar
  28. 28.
    G. Assenza, G. Pellegrino, M. Tombini, et al., “Delta waves increase after cortical plasticity induction during wakefulness,” Clin. Neurophysiol., 124, No. 11, 71-72 (2013), doi: Scholar
  29. 29.
    B. Güntekin and E. Başar, “Review of evoked and event-related delta responses in the human brain,” Int. J. Psychophysiol. (2015), doi:
  30. 30.
    B. Güntekin and E. Başar, “A review of brain oscillations in perception of faces and emotional pictures,” Neuropsychologia, 58, 33-51 (2014), doi: Scholar
  31. 31.
    M. A. Klados, C. Frantzidis, A. B. Vivas, et al., “A framework combining delta event-related oscillations(EROs) and synchronisation effects,” Computat. Intel. Neurosci., 16 (2009) (Article ID 549419).Google Scholar
  32. 32.
    B. Güntekin and E. Başar, “Brain oscillations are highly influenced by gender differences,” Int. J. Psychophysiol., 65, 294-299 (2007).CrossRefPubMedGoogle Scholar
  33. 33.
    R. J. M. Somsen, B. J. van’t Klooster, M. W. van der Molen, et al., “Growth spurts in brain maturation during middle childhood as indexed by EEG power spectra,” Biol. Psychol., 44, No. 3, 187-209 (1997), doi: Scholar
  34. 34.
    J. Yordanova and V. Kolev, “Developmental changes in the event-related EEG theta response and P300,” Electroencephalogr. Clin. Neurophysiol./Evoked Potentials Sect., 104, No. 5, 418-430 (1997), doi: Scholar
  35. 35.
    J. Yordanova and V. Kolev, “Developmental changes in the theta response system: A single sweep analysis,” J. Psychophysiol., 12, No. 2, 113-126 (1998), Retrieved from Scholar
  36. 36.
    Z. X. Liu, S. Woltering, and M. D. Lewis, “Developmental change in EEG theta activity in the medial prefrontal cortex during response control,” NeuroImage, 85, No. 2, 873-887 (2014), doi: Scholar
  37. 37.
    K. Sasaki, A. Nambu, T. Tsujimoto, et al., “Studies on integrative functions of the human frontal association cortex with MEG,” Cogn. Brain Res., 5, 165-174 (1996).CrossRefGoogle Scholar
  38. 38.
    L. I. Aftanas, A. A. Varlamov, S. V. Pavlov, et al., “Affective picture processing: event-related synchronization within individually defined human theta band is modulated by valence dimension,” Neurosci. Lett., 303, 115-118 (2001).CrossRefPubMedGoogle Scholar
  39. 39.
    C. Mulert, G. Juckel, M. Brunnmeier, et al., “Rostral anterior cingulate cortex activity in the theta band predicts response to antidepressive medication,” Clin. EEG Neurosci., 38, 78-81 (2007b).CrossRefPubMedGoogle Scholar
  40. 40.
    D. A. Pizzagalli, T. R. Oakes, and R. J. Davidson, “Coupling of theta activity and glucose metabolism in the human rostral anterior cingulate cortex: an EEG/PET study of normal and depressed subjects,” Psychophysiology, 40, 939-949 (2003).CrossRefPubMedGoogle Scholar
  41. 41.
    E. Basar and M. Schurmannn, “Cross-modality experiments in humans,” in: Brain Function and Oscillations: II. Integrative Brain Function, Neurophysiology and Cognitive Processes, E. Basar (ed.) Springer, Berlin (1999).CrossRefGoogle Scholar
  42. 42.
    C. Neuper and G. Pfurtscheller, “Event-related dynamics of cortical rhythms: Frequency-specific features and functional correlates,” Int. J. Psychophysiol., 43, 41-58 (2001).CrossRefPubMedGoogle Scholar
  43. 43.
    J. Fan, J. Byrne, M. S. Worden, et al., “The relation of brain oscillations to attentional networks,” J. Neurosci., 27, 6197-6206 (2007).CrossRefPubMedGoogle Scholar
  44. 44.
    B. E. Kilavik, M. Zaepffel, A. Brovelli, et al., “The ups and downs of beta oscillations in sensorimotor cortex,” Exp. Neurol., 245, 15-26 (2013), doi: Scholar
  45. 45.
    S. Weiss and H. M. Mueller, “Too many betas do not spoil the broth: The role of beta brain oscillations in language processing,” Front. Psychol., 3, 201 (2012), Scholar
  46. 46.
    S. Hanslmayr, T. Staudigl, and M.-C. Fellner, “Oscillatory power decreases and long-term memory: the information via desynchronization hypothesis,” Front. Human Neurosci., 6, 74 (2012), Scholar
  47. 47.
    S. Gerhand, “The prefrontal cortex—executive and cognitive functions,” Brain, 122, No. 5, 994-995 (1999), Retrieved from Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • D. P. X. Kan
    • 1
  • P. E. Croarkin
    • 2
  • C. K. Phang
    • 3
  • P. F. Lee
    • 1
  1. 1.Lee Kong Chien Faculty of Engineering and ScienceTunku Abdul Rahman UniversityKajangMalaysia
  2. 2.Mayo Clinic Depression CenterRochesterUSA
  3. 3.Sunway Medical CentrePetaling JayaMalaysia

Personalised recommendations