, Volume 49, Issue 5, pp 372–383 | Cite as

fMRI Visualization of Functional Patterns of Neural Networks during the Performance of Cyclic Finger Movements: Age-Related Peculiarities

  • A. N. Omel’chenko
  • N. E. Makarchuk

Using functional magnetic resonance imaging (fMRI), we visualized patterns of activity of neural macronetworks in healthy humans during the performance of cyclic finger movements and studied agerelated peculiarities of these patterns. Three age groups of subjects (7 to 86 years old) were examined. The paradigm of activation corresponded to simple repeated test movements of touching of the fingerpads of the forefinger and thumb of the right hand. We analyzed patterns of activation, deactivation, and functional connectivity of the brain sensorimotor, default, and frontoparietal networks. Schemes of activation of zones of the primary and associative sensorimotor cortex related to the test task performance by subjects of different ages were rather similar to each other. Concurrently with the processes of activation of the sensorimotor network, we observed partial deactivation of certain nodi of the default mode network and formation of functional connectivity between some such nodi. The obtained data confirm the statement that the default mode network is heterogeneous; different parts of this network can simultaneously demonstrate desynchronization and autonomic functioning. There are reasons to believe that, in the junior age, the functional connectivity of zones corresponding to the default mode network had been formed incompletely. We found the functional connectivity of the frontoparietal neural network consisting of parts of the parietal cortex and dorsolateral prefrontal cortices of both cerebral hemispheres. In elderly subjects, the functional connectivity between the dorsolateral prefrontal cortex of the left hemisphere and other parts of the frontoparietal neural network is weakened.


brain functional MRI (fMRI) motor cortex functional connectivity default-mode network (DMN) 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. Purves, Neuroscience, Sinauer Ass., Sunderland (2012).Google Scholar
  2. 2.
    A. Barkovich, G. Lyon, and P. Evrard, “Formation, maturation, and disorders of white matter,” Am. J. Neuroradiol., 13, No. 2, 447-461 (1992).PubMedGoogle Scholar
  3. 3.
    P. R. Huttenlocher and A. S. Dabholkar, “Regional differences in synaptogenesis in human cerebral cortex,” J. Comp. Neurol., 387, No. 2, 167-178 (1997).CrossRefPubMedGoogle Scholar
  4. 4.
    A. J. Farrall and J. M. Wardlaw, “Blood-brain barrier: ageing and microvascular disease – systematic review and meta-analysis,” Neurobiol. Aging, 30, No. 3, 337-352 (2009).CrossRefPubMedGoogle Scholar
  5. 5.
    S. N. Burke and C. A. Barnes, “Neural plasticity in the ageing brain,” Nat. Rev. Neurosci., 7, No. 1, 30 (2006).Google Scholar
  6. 6.
    S. C. Johnson, A. J. Saykin, L. C. Baxter, et al., “The relationship between fMRI activation and cerebral atrophy: comparison of normal aging and Alzheimer disease,” NeuroImage, 11, No. 3, 179-187 (2000).Google Scholar
  7. 7.
    R. I. Scahill, C. Frost, R. Jenkins, et al., “A longitudinal study of brain volume changes in normal aging using serial registered magnetic resonance imaging,” Arch. Neurol., 60, No. 7, 989-994 (2003).CrossRefPubMedGoogle Scholar
  8. 8.
    A. Meyer-Lindenberg, “The evolution of complexity in human brain development: an EEG study,” Electroencephalogr. Clin. Neurophysiol., 99, No. 5, 405-411 (1996).CrossRefPubMedGoogle Scholar
  9. 9.
    T. P. Zanto and A. Gazzaley, “Frontoparietal network: flexible hub of cognitive control,” Trends Cognit. Sci., 17, No. 12, 602-603 (2013).CrossRefGoogle Scholar
  10. 10.
    M. E. Raichle and A. Z. Snyder, “A default mode of brain function: a brief history of an evolving idea,” NeuroImage, 37, No. 4, 1083-1090 (2007).Google Scholar
  11. 11.
    J. D. Allison, K. J. Meador, D. W. Loring, et al., “Functional MRI cerebral activation and deactivation during finger movement,” Neurology, 54, No. 1, 135 (2000).Google Scholar
  12. 12.
    A. N. Omel’chenko and Z. Z. Rozhkova, “Characteristics of fMRI patterns during the performance of hand and finger movements of different complexity,” Neurophysiology, 48, No. 1, 23-30 (2016).Google Scholar
  13. 13.
    K. J. Friston, A. P. Holmes, K. J. Worsley, et al., “Statistical parametric maps in functional imaging: a general linear approach,” Human Brain Mapp., 2, No. 4, 189-210 (1994).Google Scholar
  14. 14.
    K. J. Worsley, C. H. Liao, J. Aston, et al., “A general statistical analysis for fMRI data,” NeuroImage, 15, No. 1, 1-15 (2002).Google Scholar
  15. 15.
    C. F. Beckmann and S. M. Smith, “Probabilistic independent component analysis for functional magnetic resonance imaging,” IEEE Trans. Med. Imaging, 23, No. 2, 137-152 (2004).CrossRefPubMedGoogle Scholar
  16. 16.
    C. F. Beckmann and S. M. Smith, “Tensorial extensions of independent component analysis for multisubject fMRI analysis,” NeuroImage, 25, No. 1, 294-311 (2005).Google Scholar
  17. 17.
    W. van der Zwaag, S. Francis, K. Head, et al., “fMRI at 1.5, 3 and 7 T: characterising BOLD signal changes,” NeuroImage, 47, No. 4, 1425-1434 (2009).CrossRefPubMedGoogle Scholar
  18. 18.
    P. Jezzard, P. M. Matthews, and S. M. Smith, Functional MRI: an Introduction to Methods, Oxford Univ. Press, Oxford (2001).Google Scholar
  19. 19.
    M. Rijntjes, C. Dettmers, C. Büchel, et al., “A blueprint for movement: functional and anatomical representations in the human motor system,” J. Neurosci., 19, No. 18, 8043-8048 (1999).CrossRefPubMedGoogle Scholar
  20. 20.
    S. J. Gilbert and P. W. Burgess, “Executive function,” Curr. Biol., 18, No. 3, R110-R114 (2008).CrossRefPubMedGoogle Scholar
  21. 21.
    G. Rizzolatti, “The mirror neuron system and its function in humans,” Anat. Embryol., 210, Nos. 5/6, 419-421 (2005).Google Scholar
  22. 22.
    J. L. Andreassi, Psychophysiology: Human Behavior and Physiological Response, Psychol. Press (2013).Google Scholar
  23. 23.
    J. R. Binder, J. A. Frost, T. A. Hammeke, et al., “Human temporal lobe activation by speech and nonspeech sounds,” Cerebr. Cortex, 10, No. 5, 512-528 (2000).CrossRefGoogle Scholar
  24. 24.
    N. Ward and R. Frackowiak, “Age-related changes in the neural correlates of motor performance,” Brain, 126, No. 4, 873-888 (2003).Google Scholar
  25. 25.
    R. D. Seidler, J. A. Bernard, T. B. Burutolu, et al., “Motor control and aging: links to age-related brain structural, functional, and biochemical effects,” Neurosci. Biobehav. Rev., 34, No. 5, 721-733 (2010).CrossRefPubMedGoogle Scholar
  26. 26.
    L. Bäckman, L. Nyberg, U. Lindenberger, et al., “The correlative triad among aging, dopamine, and cognition: current status and future prospects,” Neurosci. Biobehav. Rev., 30, No. 6, 791-807 (2006).CrossRefPubMedGoogle Scholar
  27. 27.
    M. D’Esposito, L. Y. Deouell, and A. Gazzaley, “Alterations in the BOLD fMRI signal with ageing and disease: a challenge for neuroimaging,” Nat. Rev. Neurosci., 4, No. 11, 863-872 (2003).CrossRefPubMedGoogle Scholar
  28. 28.
    T. A. Salthouse, T. M. Atkinson, and D. E. Berish, “Executive functioning as a potential mediator of agerelated cognitive decline in normal adults,” J. Exp. Psychol. Gen., 132, No. 4, 566 (2003).Google Scholar
  29. 29.
    K. Sakai, N. Ramnani, and R. E. Passingham, “Learning of sequences of finger movements and timing: frontal lobe and action-oriented representation,” J. Neurophysiol., 88, No. 4, 2035-2046 (2002).CrossRefPubMedGoogle Scholar
  30. 30.
    J. C. Culham and N. G. Kanwisher, “Neuroimaging of cognitive functions in human parietal cortex,” Curr. Opin. Neurobiol., 11, No. 2, 157-163 (2001).CrossRefPubMedGoogle Scholar
  31. 31.
    M. D. Fox, M. Corbetta, A. Z. Snyder, et al., “Spontaneous neuronal activity distinguishes human dorsal and ventral attention systems,” Proc. Natl. Acad. Sci. USA, 103, No. 26, 10046-10051 (2006).CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    C. L. Grady, A. B. Protzner, N. Kovacevic, et al., “A multivariate analysis of age-related differences in default mode and task-positive networks across multiple cognitive domains,” Cerebr. Cortex, 20, No. 6, 1432-1447 (2009).Google Scholar
  33. 33.
    F. Sambataro, V. P. Murty, J. H. Callicott, et al., “Agerelated alterations in default mode network: impact on working memory performance,” Neurobiol. Aging, 31, No. 5, 839-852 (2010).CrossRefPubMedGoogle Scholar
  34. 34.
    D. A. Fair, A. L. Cohen, N. U. Dosenbach, et al., “The maturing architecture of the brain’s default network,” Proc. Natl. Acad. Sci. USA, 105, No. 10, 4028-4032 (2008).CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    M. D’Esposito, E. Zarahn, G. K. Aguirre, et al., “The effect of normal aging on the coupling of neural activity to the bold hemodynamic response,” NeuroImage, 10, No. 1, 6-14 (1999).Google Scholar
  36. 36.
    A. Struppler, F. Binkofski, B. Angerer, et al., “A frontoparietal network is mediating improvement of motor function related to repetitive peripheral magnetic stimulation: a PET-H2O15 study,” NeuroImage, 36, T174-T186 (2007).CrossRefPubMedGoogle Scholar
  37. 37.
    B. Avelar-Pereira, L. Bäckman, A. Wåhlin, et al., “Age-related differences in dynamic interactions among default mode, frontoparietal control, and dorsal attention networks during resting-state and interference resolution,” Front. Aging Neurosci., 9, doi:10.3389/fnagi.2017.00152 (2017).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Taras Shevchenko Kyiv National UniversityKyivUkraine
  2. 2.Medical Center “Boris”KyivUkraine

Personalised recommendations