Advertisement

Neurophysiology

, Volume 49, Issue 5, pp 363–371 | Cite as

Effects of Implantation of Cryopreserved Placental Explants on the Behavioral Indices and Morphological Characteristics of the Cerebral Structures in Senescent Mice

  • I. B. Musatova
  • V. V. Volina
  • O. V. Chub
  • V. Yu. Prokopyuk
  • O. S. Prokopyuk
Article
  • 6 Downloads

The effects of implantation of cryopreserved placental explants (CPEs) on the behavioral phenomena were studied in adult young (6 months old) and in senescent (presenile ontogenetic period, 12 months old) mice; morphological characteristics of the cerebral structures were also examined in these animals. Implantation of CPEs significantly influenced the behavioral indices and adaptational capacities of senescent mice; the direction of such effects was sex-dependent. In male mice, manifestations of deadaptation (decreases in the mobility and exploration habits and an increase in anxiety) were observed, while in females the behavioral manifestations were opposite (positive). Implantation of CPEs led to partial smoothing of negative shifts in the morphological characteristics in the motor cortex and hippocampus of senescent mice. Therefore, CPEs can serve as a source of natural compounds and cell elements providing the activation of neurogenesis, formation of new neurons, and their proliferation in key structures of the brain. In prospect, CPE-based therapeutic agents can be used for the correction of age-related dysfunctions of the CNS.

Keywords

aging placenta cryopreservation behavior neocortex hippocampus neurogenesis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. W. Mahncke, A. Bronstone, and M. M. Merzenich, “Brain plasticity and functional losses in the aged: scientific bases for a novel intervention,” Prog. Brain Res., 157, 81-109 (2006).CrossRefPubMedGoogle Scholar
  2. 2.
    L. A. Mongiat and А. F. Schinder, “Adult neurogenesis and the plasticity of the dentate gyrus network,” Eur. J. Neurosci., 33, No. 6, 1055-1061 (2011).CrossRefPubMedGoogle Scholar
  3. 3.
    E. L. Glisky, “Changes in cognitive function in human aging,” in: Brain Aging: Models, Methods, and Mechanisms, David R. Riddle (ed.), CRC Press /Taylor & Francis; Chapter 1 (2007).Google Scholar
  4. 4.
    N. V. Anisimov, Molecular and Physiological Mechanisms of Aging [in Russian], Vol. 1, Nauka, Saint Petersburg (2008).Google Scholar
  5. 5.
    J. O. Goh and D. C. Park, “Neuroplasticity and cognitive aging: the scaffolding theory of aging and cognition,” Restorat. Neurol. Neurosci., 27, No. 5, 391-403 (2009).Google Scholar
  6. 6.
    M. S. Penner, T. L. Roth, C. Barnes, and J. D. Sweatt, “An epigenic hypothesis of aging-related cognitive dysfunction,” Front. Aging Neurosci., 2, 9-11 (2010).PubMedPubMedCentralGoogle Scholar
  7. 7.
    R. Coras, F. A. Siebzehnrubl, E. Pauli, et al., “Low proliferation capacities of adult hippocampal stem cells correlate with memory dysfunction in humans,” Brain, 133, 3359-3372 (2010).CrossRefPubMedGoogle Scholar
  8. 8.
    E. Drapeau and D. Nora Abrous, “Stem cell review series: role of neurogenesis in age-related memory disorders,” Aging Cell, 7, No. 4, 569-589 (2008).Google Scholar
  9. 9.
    S. Nikolova, S. M. Stark, and C. E. Stark, “3T hippocampal glutamate-glutamine complex reflects verbal memory decline in aging,” Neurobiol. Aging, 54, 103-111 (2017).CrossRefPubMedGoogle Scholar
  10. 10.
    J. E. Malberg, A. J. Eisch, E. J. Nestler, and R. S. Duman, “Chronic antidepressant treatment increases neurogenesis in adult rat hippocampus,” J. Neurosci., 20, 9104-9110 (2000).PubMedGoogle Scholar
  11. 11.
    N. Geribaldi-Doldаn, E. Flores-Giubi, M. Murillo-Carretero, et al., “12-deoxyphorbols promote adult neurogenesis by inducing neural progenitor cell proliferation via PKC activation,” Int. J. Neuropsychopharmacol., 19, No. 1, 1-14, pii: pyv085. doi: 10.1093/ijnp/pyv085 (2015).Google Scholar
  12. 12.
    N. Mochizuki, Y. Moriyama, N. Takagi, et al., “Intravenous injection of neural progenitor cells improves cerebral ischemia-induced learning dysfunction,” Biol. Pharm. Bull., 34, No. 2, 260-265 (2011).CrossRefPubMedGoogle Scholar
  13. 13.
    A. S. Hill, A. Sahay, and R. Hen, “Increasing adult hippocampal neurogenesis is sufficient to reduce anxiety and depression-like behaviors,” Neuropsychopharmacology, 40, No. 10, 2368-2378 (2015).Google Scholar
  14. 14.
    M. V. Vedunova, T. A. Sakharnova, E. V. Mitroshina, et al., “Antihypoxic and neuroprotective properties of neurotrophic factors BDNF and GDNF in hypoxia in vitro and in vivo,” Sovrem. Tekhnol. Med., 6, No. 4, 1-10 (2014).Google Scholar
  15. 15.
    M. Nibuya, S. Morinobu, and R. S. Duman, “Regulation of BDNF and trkB mRNA in rat brain by chronic electroconvulsive seizure and antidepressant drug treatments,” J. Neurosci., 15, No. 11, 7539-7547 (1995).CrossRefPubMedGoogle Scholar
  16. 16.
    N. D. Bull and P. F. Bartlett, “The adult mouse hippocampal progenitor is neurogenic but not a stem cell,” J. Neurosci., 25, No. 47, 10815-10821 (2005).CrossRefPubMedGoogle Scholar
  17. 17.
    J. Chen and R. Shi, “Current advances in neurotrauma research: diagnosis, neuroprotection, and neurorepair,” Neural Regen. Res., 9, No. 11, 1093-1095 (2014).CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    F. Colleoni, A. J. Morash, T. Ashmore, et al., “Cryopreservation of placental biopsies for mitochondrial respiratory analysis,” Placentа, 33, No. 2, 122-123 (2012).Google Scholar
  19. 19.
    A. Garrod, G. Batra, I. Ptacek, et al., “Duration and method of tissue storage alters placental morphology – implications for clinical and research practice,” Placenta, 34, No. 11, 1116-1119 (2013).Google Scholar
  20. 20.
    C. Pipino, P. Shangaris, E. Resca, et al., “Placenta as a reservoir of stem cells: an underutilized resource,” Br. Med. Bull., 105, 43-68 (2013).Google Scholar
  21. 21.
    T. A. Astrelina, A. E. Gomzyakov, I. V. Kobzeva, et al., “Estimation of quality and safety of use of cryopreserved pluripotent mesenchymal stromal cells of the placenta in clinical practice,” Kletoch. Transplant. Tkan. Inzh., 8, No. 4, 82-87 (2013).Google Scholar
  22. 22.
    D. Pogozhykh, V. Prokopyuk, О. Pogozhykh, et al., “Influence of factors of cryopreservation and hypothermic storage on survival and functional parameters of multipotent stromal cells of placental origin,” PLoS One, 10, No. 10, e0139834 (2015).Google Scholar
  23. 23.
    M. D. Vasilyuk, A. G. Shevchuk, E. I. Romanishin, et al., “Transplantation of cryoplacental tissues in treatment and prevention of the appearance of syndrome of diabetic foot,” Transplantologiya, 4, No. 1, 134-135 (2003).Google Scholar
  24. 24.
    V. Yu. Prokopyuk, O. V Falko., I. B. Musatova, et al., “Low temperature preservation and storage of placental biological derivatives,” Probl. Cryobiol. Cryomed., 25, No. 4, 291-310 (2015).Google Scholar
  25. 25.
    N. O. Schevchenko, K. V. Somova, V. V. Volina, et al., “Dynamics of activity and duration of functioning of cryopreserved cryoextract, placental cells and fragments in the organism of experimental animals,” Morphologia, 10, No. 2, 93-98 (2016).Google Scholar
  26. 26.
    V. Yu. Prokopyuk, O. S. Prokopyuk, I. B. Musatova, et al., “Safety of placental, umbilical cord and fetal membrane explants after cryopreservation,” Cell Organ Transplantol., 3, No. 1, 34-38 (2015).Google Scholar
  27. 27.
    Preclinical Studies of Medicinal Agents [in Ukrainian], O. V. Stefanov (ed.), Publishing House “Avicenna,” Kyiv (2001).Google Scholar
  28. 28.
    V. I. Dontsov, Experimental Gerontology: Method for the Study of Aging [in Russian], Al’teks, Moscow (2011).Google Scholar
  29. 29.
    I. B. Musatova, O. S. Prokopyuk, V. V. Volina, and V. Yu. Prokopyuk, “Creation of cryoprotective media for preservation of placental tissue explants,” Biotechnol. Acta, 6, No. 6, 132-138 (2013).CrossRefGoogle Scholar
  30. 30.
    T. A. Voronina and S. B. Seredenin, “Experimental study of preparations with tranquillizing (anxiolytic) effect: guidelines,” Vedomosti Farmakol. Kom. MZ Ross. Fed., No. 2, 19-25 (1998).Google Scholar
  31. 31.
    M. Faizi, P. L. Bader, N. Saw, et al., “Thy1-hAPPLond/Swe+ mouse model of Alzheimer’s disease displays broad behavioral deficits in sensorimotor, cognitive and social function,” Brain Behav., 2, No. 2, 142-154 (2012).CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Methods of Behavior Analysis in Neuroscience, 2nd edn., Front. Neurosci., Jerry J. J. Buccafusco (ed.), Medical College of Georgia, Augusta, CRC Press / Taylor and Francis (2009).Google Scholar
  33. 33.
    D. É. Korzhevskii and A. V. Gilarov, Basic Foundation of Histological Technique. Practical Guide [in Russian], Spetslit, Saint Petersburg (2010).Google Scholar
  34. 34.
    D. F. Avgustinovich and I. L. Kovalenko, “Formation of pathology of behavior in С57BL/6J female mice under the influence of long-lasting psychoemotional action,” Sechenov Ros. Fiziol. Zh., 90, No. 11, 1324-1336 (2004).Google Scholar
  35. 35.
    A. V. Mel’nikov, M. A. Kulikov, M. R. Novikova, and E. V. Sharova, “Choice of indices of behavioral tests for estimation of typological peculiarities of behavior of rats,” Zh. Vysch. Nerv. Deyat., 54, No. 5, 712-717 (2004).Google Scholar
  36. 36.
    P. A. Russe, “Relationships between exploratory behaviour and fear: a review,” Brit. J. Psychol., 64, 417-433 (1973).CrossRefGoogle Scholar
  37. 37.
    A. Carobrez and L. Bertoglio, “Ethological and temporal analyses of anxiety-like behavior: the elevated plusmaze model 20 years on,” Neurosci. Biobehav. Rev., 29, No. 8, 1193-1205 (2005).CrossRefPubMedGoogle Scholar
  38. 38.
    I. P. Levshina, V. N. Mats, N. V. Pasikova, and N. N. Shuikin, “Comparison between the behavior of rats after long-lasting immobilization and structural modifications in the motor cortex and hippocampus,” Zh. Vyssh., Nerv. Deyat., 60, No. 2, 184-191 (2010).Google Scholar
  39. 39.
    O. A. Gromova, I. Yu. Torshin, E. A. Dibrova, et al., “World experience in the use of preparations obtained from the human placenta: results of clinical and experimental studies. Review,” Plast. Khir. Kosmetol., 3, 385-576 (2011).Google Scholar
  40. 40.
    O. S. Prokopyuk, V. Yu. Prokopyuk, N. M. Pasieshvili, et al., “Implantation of cryopreserved human placental fragments restores prooxidant-antioxidant balance in experimental animals of late ontogeny,” Cryobiol. Cryomed., 27, No. 1, 61-70 (2017).CrossRefGoogle Scholar
  41. 41.
    O. Parolini, F. Alviano, G. P. Bagnara, et al., “Concise review: isolation and characterization of cells from human term placenta: outcome of the first international ‘Workshop on Placenta Derived Stem Cells’,” Stem Cells, 26, No. 2, 300-311 (2008).Google Scholar
  42. 42.
    G. Tonello, M. Daglio, N. Zaccarelli, et al., “Characterization and quantitation of the active polynucleotide fraction (PDRN) from human placenta, a tissue repair stimulating agent,” J. Pharm. Biomed. Anal., 14, 1555-1560 (1996).CrossRefPubMedGoogle Scholar
  43. 43.
    K. Yamada and T. Nabeshima, “Brain-derived neurotrophic factor/TrkB signaling in memory processes,” J. Pharmacol. Sci., 91, 267-270 (2003).CrossRefPubMedGoogle Scholar
  44. 44.
    K. Takuma, H. Mizoguchi, and Y. Funatsu, “Placental extract improves hippocampal neuronal loss and fear memory impairment resulting from chronic restraint stress in ovariectomized mice,” J. Pharmacol. Sci., 120, 89-97 (2012).CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute for Problems of Cryobiology and CryomedicineNational Academy of Sciences of UkraineKharkivUkraine

Personalised recommendations