, Volume 49, Issue 5, pp 357–362 | Cite as

Cognitive Event-Related Potentials (P300) and Cognitive Impairment in Duchenne Muscular Dystrophy

  • N. Esquitin-Garduño
  • R. E. Escobar-Cedillo
  • B. G. Flores-Avalos
  • G. Escobar-Cedillo
  • A. Miranda-Duarte
  • L. B. López-Hernández
  • V. I. Orellana-Villazón
  • R. M. Coral-Vázquez
  • S. García
  • B. Gómez-Díaz

Duchenne muscular dystrophy (DMD) is a progressing disorder characterized by muscle wasting and weakness due to the absence or alteration of the function of dystrophin that protects muscle cells from mechanical stress induced by a movement during contraction. The function of dystrophin isoforms expressed in the brain is not fully understood, but the presence of non-progressing cognitive impairment (including disorders of learning and memory) is a common feature in patients with DMD. To establish correlation between the cognitive event-related potential P300 and psychological evaluation with an intelligence test based on the Stanford Binet Intelligence Quotient (IQ) in patients with DMD and a control group, the respective tests were performed in 31 patients with DMD and 30 controls. The mean age of the group with DMD was 9.35 ± 2.88 years, while that in control children was 9.43 ± 2.69 years (P = 0.89). The IQ was 90.77 ± 12.62 in the DMD group and 106.77 ± 9.62 in the controls (P < 0.0001). The amplitude of the cognitive potential P300 in leads Fz, Cz, and Pz showed no statistically significant differences between the groups. Thus, parameters of the P300 potential and cognitive assessment showed nearly no relationship in patients with DMD vs. controls.


Duchenne muscular dystrophy cognition event-related potentials P300 Intelligence Quotient (IQ) 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    W. D. Biggar, “Duchenne muscular dystrophy,” Pediat. Rev., 27, No. 3, 83-88 (2006).Google Scholar
  2. 2.
    E. P. Hoffman, “Muscular dystrophy: identification and use of genes for diagnostics and therapeutics,” Arch. Pathol. Lab. Med., 123, No. 11, 1050-1052 (1999).PubMedGoogle Scholar
  3. 3.
    F. Muntoni, S. Torelli, and A. Ferlini, “Dystrophin and mutations: one gene, several proteins, multiple phenotypes,” Lancet Neurol., 2, No. 12, 731-740 (2003).CrossRefPubMedGoogle Scholar
  4. 4.
    M. F. Costa, A. G. Oliveira, C. Feitosa-Santana, et al., “Red-green color vision impairment in Duchenne muscular dystrophy,” Am. J. Human Genet., 80, No. 6, 1064-1075 (2007).CrossRefGoogle Scholar
  5. 5.
    S. M. Cotton, N. J. Voudouris, and K. M. Greenwood, “Association between intellectual functioning and age in children and young adults with Duchenne muscular dystrophy: further results from a meta-analysis,” Dev. Med. Child Neurol., 47, No. 4, 257-265 (2005).CrossRefPubMedGoogle Scholar
  6. 6.
    N. Doorenweerd, C. S. Straathof, E. M. Dumas, et al., “Reduced cerebral gray matter and altered white matter in boys with Duchenne muscular dystrophy,” Ann. Neurol., 76, No. 3, 403-411 (2014).CrossRefPubMedGoogle Scholar
  7. 7.
    M. V. Della Coletta, R. H. Scola, G. R. Wiemes, et al., “Event-related potentials (P300) and neuropsychological assessment in boys exhibiting Duchenne muscular dystrophy,” Arq. Neuropsiquiat., 65, No. 1, 59-62 (2007).CrossRefPubMedGoogle Scholar
  8. 8.
    A. Kazis, V. Kimiskidis, G. Georgiadis, et al., “Cognitive event-related potentials and magnetic resonance imaging in myotonic dystrophy,” Neurophysiol. Clin., 26, No. 2, 75-84 (1996).CrossRefPubMedGoogle Scholar
  9. 9.
    K. D. Mathews, C. Cunniff, J. R. Kantamneni, et al., “Muscular dystrophy surveillance tracking and research network (MD STARnet): case definition in surveillance for childhood-onset Duchenne/Becker muscular dystrophy,” J. Child Neurol., 25, No. 9, 1098-1102 (2010).CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    M. J. Keston and C. Jimenez, “A study of the performance on English and Spanish editions of the Stanford-Binet intelligence test by Spanish-American children,” J. Genet. Psychol., 85, No. 2, 263-269 (1954).CrossRefPubMedGoogle Scholar
  11. 11.
    H. J. Heinze, T. F. Munte, M. Kutas, et al., “Cognitive event-related potentials. The International Federation of Clinical Neurophysiology,” Electroencephalogr. Clin. Neurophysiol., Suppl., 52, 91-95 (1999).Google Scholar
  12. 12.
    T. R. Bashore and M. W. van der Molen, “Discovery of the P300: a tribute,” Biol. Psychol., 32, Nos. 2/3, 155-171 (1991).Google Scholar
  13. 13.
    W. S. Pritchard, “Psychophysiology of P300,” Psychol. Bull., 89, No. 3, 506-540 (1981).CrossRefPubMedGoogle Scholar
  14. 14.
    T. Dierks, L. Frolich, R. Ihl, et al., “Event-related potentials and psychopharmacology. Cholinergic modulation of P300,” Pharmacopsychiatry, 27, No. 2, 72-74 (1994).CrossRefPubMedGoogle Scholar
  15. 15.
    M. Fabiani, D. Karis, and E. Donchin, “Effects of mnemonic strategy manipulation in a Von Restorff paradigm,” Electroencephalogr. Clin. Neurophysiol., 75, No. 2, 22-35 (1990).CrossRefPubMedGoogle Scholar
  16. 16.
    J. Polich, “Clinical application of the P300 event-related brain potential,” Phys. Med. Rehabil. Clin. N. Am., 15, No. 1, 133-161 (2004).CrossRefPubMedGoogle Scholar
  17. 17.
    A. Pfefferbaum, K. O. Lim, J. E. Desmond, et al., “Thinning of the corpus callosum in older alcoholic men: a magnetic resonance imaging study,” Alcohol Clin. Exp. Res., 20, No. 4, 752-757 (1996).CrossRefPubMedGoogle Scholar
  18. 18.
    J. Polich, “Meta-analysis of P300 normative aging studies,” Psychophysiology, 33, No. 4, 334-353 (1996).Google Scholar
  19. 19.
    J. Polich and J. Corey-Bloom, “Alzheimer’s disease and P300: review and evaluation of task and modality,” Current Alzheimer Res., 2, No. 5, 515-525 (2005).CrossRefGoogle Scholar
  20. 20.
    S. E. Cyrulnik, R. J. Fee, D. C. De Vivo, et al., “Delayed developmental language milestones in children with Duchenne’s muscular dystrophy,” J. Pediat., 150, No. 5, 474-478 (2007).CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    V. J. Hinton, R. J. Fee, E. M. Goldstein, et al., “Verbal and memory skills in males with Duchenne muscular dystrophy,” Dev. Med. Child Neurol., 49, No. 2, 123-128 (2007).CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    A. M. Connolly, J. M. Florence, M. M. Cradock, et al., “One year outcome of boys with Duchenne muscular dystrophy using the Bayley-III scales of infant and toddler development,” Pediat. Neurol., 50, No. 6, 557-563 (2014).CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    S. E. Cyrulnik and V. J. Hinton, “Duchenne muscular dystrophy: a cerebellar disorder?” Neurosci. Biobehav. Rev., 32, No. 3, 486-496 (2008).CrossRefPubMedGoogle Scholar
  24. 24.
    J. L. Anderson, S. I. Head, C. Rae, et al., “Brain function in Duchenne muscular dystrophy,” Brain, 125, Part 1, 4–13 (2002).Google Scholar
  25. 25.
    R. Kreis, K. Wingeier, P. Vermathen, et al., “Brain metabolite composition in relation to cognitive function and dystrophin mutations in boys with Duchenne muscular dystrophy,” NMR Biomed., 24, No. 3, 253-262 (2011).Google Scholar
  26. 26.
    S. E. Cyrulnik, R. J. Fee, A. Batchelder, et al., “Cognitive and adaptive deficits in young children with Duchenne muscular dystrophy (DMD),” J. Int. Neuropsychol. Soc., 14, No. 5, 853-861 (2008).CrossRefPubMedGoogle Scholar
  27. 27.
    D. J. Blake and S. Kroger, “The neurobiology of Duchenne muscular dystrophy: learning lessons from muscle?” Trends Neurosci., 23, No. 3, 92-99 (2000).CrossRefPubMedGoogle Scholar
  28. 28.
    V. J. Hinton, D. C. De Vivo, N. E. Nereo, et al., “Selective deficits in verbal working memory associated with a known genetic etiology: the neuropsychological profile of Duchenne muscular dystrophy,” J. Int. Neuropsychol. Soc., 7, No. 1, 45-54 (2001).CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    H. Veiga, A. Deslandes, M. Cagy, et al., “Visual eventrelated potential (P300): a normative study,” Arq. Neuropsiquiat., 62, No. 3A, 575-581 (2004).CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • N. Esquitin-Garduño
    • 1
  • R. E. Escobar-Cedillo
    • 1
  • B. G. Flores-Avalos
    • 1
  • G. Escobar-Cedillo
    • 1
  • A. Miranda-Duarte
    • 1
  • L. B. López-Hernández
    • 2
  • V. I. Orellana-Villazón
    • 2
  • R. M. Coral-Vázquez
    • 3
  • S. García
    • 2
  • B. Gómez-Díaz
    • 1
  1. 1.National Institute of RehabilitationMexico CityMexico
  2. 2.National Medical Centre “20 de Noviembre”Institute for Social Security of State WorkersMexico CityMexico
  3. 3.Studies Section of Postgraduate and Research, School of MedicineNational Polytechnic InstituteMexico CityMexico

Personalised recommendations