, Volume 49, Issue 4, pp 276–282 | Cite as

Postvaccination Accumulation of the Influenza Virus Antigen in the Rat Choroid Plexus

  • I. Maslovarič
  • A. Stojkovič
  • D. Kosanovič
  • D. Markovič
  • V. Ilič
  • K. Jovanova-Nelič

We examined the accessibility of influenza virus and diphtheria-tetanus toxin (DiTe) antigens to the choroid plexus (CP) within the postvaccination period and the expression of CD11b molecules (by immunohistochemistry). Eighteen Dark Agouti (DA) rats were divided into three groups: (i) animals administered with influenza vaccine (Flu), (ii) animals administered with DiTe vaccine (DiTe), and (iii) nontreated (Contr) animals. The serum antibody titers following influenza and diphtheria-tetanus vaccination were detected by the ELISA test. Immunohistochemical staining revealed a great number of viral antigen-positive and CD11b-positive brain cells in Flu rats compared to a very small number of the respective cells in DiTe animals and no staining in the Contr group. DiTe- and Flu-rats showed significant increases in the serum anti-tetanus toxoid and anti-influenza virus antibody levels compared to those in the Contr group. The results obtained attract attention towards the dynamic role of the CP in the immunosurveillance of the CNS. Based on the viral antigen deposits accumulated in the CP, it has been proposed that the latter can play an active role in modulation of the immune response after influenza vaccine immunization.


vaccination influenza diphtheria toxin choroid plexus CD11b 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. D. Kilbourne, Influenza, Plenum Press, New York (1987).CrossRefGoogle Scholar
  2. 2.
    N. Toplak and T. Avcin, “Influenza and autoimmunity,Ann. N.Y. Acad. Sci., 1173, 619-629 (2009).CrossRefPubMedGoogle Scholar
  3. 3.
    C. Bardage, I. Persson, A. Ortqvist, et al., “Neurological and autoimmune disorders after vaccination against pandemic influenza A (H1N1) with a monovalent adjuvanted vaccine: population based cohort study in Stockholm, Sweden,” B.M.J., 343, 5956-5970 (2011).CrossRefGoogle Scholar
  4. 4.
    C. Confravreux, S. Suissa, P. Saddier, et al., “Vaccinations and the risk of relapse in multiple sclerosis,” N. Engl. J. Med., 344, 319-326 (2001).CrossRefGoogle Scholar
  5. 5.
    N.F. Moriabadi, S. Niewiesk, N. Kruse, et al., “Influenza vaccination in MS: absence of T-cell response against white matter proteins,” Neurology, 56, 938-943 (2001).CrossRefPubMedGoogle Scholar
  6. 6.
    A. Stojkovic, D. Kosanovic, I. Maslovaric, and K. Jovanova-Nesic, “Role of inactivated influenza vaccine in regulation of autoimmune processes in experimental autoimmune encephalomyelitis,” Int. J. Neurosci., 124, 139-147 (2014).CrossRefPubMedGoogle Scholar
  7. 7.
    R. Rich et al., Clinical Immunology. Principles and Practice (Expert Consult – Online and Print), 4th ed., Elsevier Saunders (2013).Google Scholar
  8. 8.
    J. Palha and M. Correia-Neves, “The choroid plexus as an immune-sensor for the brain: Implications to neurological disease,” The Dana Foundation (2007).Google Scholar
  9. 9.
  10. 10.
    J. K. Atwal, Y. Chen, C. Chiu, D. L. Mortensen, et al., “A therapeutic antibody targeting BACE1 inhibits amyloid-β production in vivo,” Sci. Transl. Med., 3, No. 84, 84ra43 (2011).CrossRefPubMedGoogle Scholar
  11. 11.
    U. Bickel, T. Yoshikawa, and W. M. Pardridge, “Delivery of peptides and proteins through the bloodbrain barrier,” Adv. Drug. Deliv., 46, 247-279 (2001).CrossRefGoogle Scholar
  12. 12.
    Z. B. Redzic and M. B. Segal, “The structure of the choroid plexus and the physiology of the choroid plexus epithelium,” Adv. Drug Deliv. Rev., 56, 1695-1716 (2004).CrossRefPubMedGoogle Scholar
  13. 13.
    S. Bourdoulous, P. O. Couraud, and X. Nassif, “Methods for studying the mechanisms of microbial entry into the central nervous system,” Methods Microbiol., 3, 419-437 (2002).CrossRefGoogle Scholar
  14. 14.
    F. Marques, J. C. Sousa, M. Correia-Neves, et al., “The choroid plexus response to peripheral inflammatory stimulus,” Neuroscience, 144, 424-430 (2007).CrossRefPubMedGoogle Scholar
  15. 15.
    C. K. Petito and B. Adkins, “Choroid plexus selectively accumulates T-lymphocytes in normal controls and after peripheral immune activation,” J. Neuroimmunol., 162, 19-27 (2005).CrossRefPubMedGoogle Scholar
  16. 16.
    A. Hanly and C. K. Petito, “HLA-DR-positive dendritic cells of the normal human choroid plexus: A potential reservoir of HIV in the central nervous system,” Hum. Pathol., 29, 88-93 (1998).CrossRefPubMedGoogle Scholar
  17. 17.
    M. K. Matyszak and V. H. Perry, “A comparison of leucocyte responses to heat-killed bacillus Calmette-Guerin in different CNS compartments,” Neuropathol. Appl. Neurobiol., 22, 44-53 (1996).CrossRefPubMedGoogle Scholar
  18. 18.
    P. G. Stevenson, S. Hawke, D. J. Sloan, and C. R. M. Bangham, “The immunogenicity of intracerebral virus infection depends on anatomical site,” J. Virol., 71, 145-151 (1997).PubMedPubMedCentralGoogle Scholar
  19. 19.
    O. K. Bitzer-Quintero and I. Gonzбlez-Burgos, “Immune system in the brain: a modulatory role on dendritic spine morphophysiology?” Neural Plast., 348642 (2012).Google Scholar
  20. 20.
  21. 21.
    J. T. Borda, X. Alvarez, M. Mohan, et al., “CD163, a marker of perivascular macrophages, is up-regulated by microglia in simian immunodeficiency virus encephalitis after haptoglobin-hemoglobin complex stimulation and is suggestive of breakdown of the blood-brain barrier,” Am. J. Pathol., 172, 725-737 (2008).CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    J. Chen, S. Namiki, M. Toma-Hirano, et al., “The role of CD11b in phagocytosis and dendritic cell development,” Immunol. Lett., 120, 42-48 (2008).CrossRefPubMedGoogle Scholar
  23. 23.
    H. G. Fischer and G. Reichmann, “Brain dendritic and macrophages/microglia in central nervous system inflammation,” J. Immunol., 166, 2717-2726 (2001).CrossRefPubMedGoogle Scholar
  24. 24.
    A. Voller, D. Bidwell, and A. Bartlett, “Enzyme immunoassays in diagnostic medicine,” Bull. W.H.O., 53, 55-65 (1976).PubMedPubMedCentralGoogle Scholar
  25. 25.
    V. Petrusic, I. Zivkovic, M. Stojanovic, et al., “Production, characterization and applications of a tetanus toxin specific monoclonal antibody T-62,” Acta. Histochem., 114, 480-486 (2012).CrossRefPubMedGoogle Scholar
  26. 26.
    P. S. Fishman, D. A. Parks, T. Bowen, and C. C. Matthews, “Localized tetanus in immunized mice,” Neurotoxicology, 30, 697-701 (2009).CrossRefPubMedGoogle Scholar
  27. 27.
    M. A. Manghi, M. F. Pasetti, M. L. Brero, et al., “Development of an ELISA for measuring the activity of tetanus toxoid in vaccines and comparison with the toxin neutralization test in mice,” J. Immunol. Methods, 168, 17-24 (1994).CrossRefPubMedGoogle Scholar
  28. 28.
    A. O. Hovden, R. J. Cox, and L. R. Haaheim, “Whole influenza virus vaccine is more immunogenic than split influenza virus vaccine and induces primarily an IgG2a response in BALB/c mice,” Scand. J. Immunol., 62, 36-44 (2005).CrossRefPubMedGoogle Scholar
  29. 29.
    S. Fernandez Gonzalez, J. P. Jayasekera, and M. C. Carroll, “Complement and natural antibody are required in the long-term memory response to influenza virus,” Vaccine, 26, Suppl. 8, 186-193 (2008).Google Scholar
  30. 30.
    M. K. Matyszak, “Inflammation in the CNS: balance between immunological privilege and immune responses,” Prog. Neurobol., 56, 19-35 (1998).CrossRefGoogle Scholar
  31. 31.
    R. Bodewes, J. H. Kreijtz, G. van Amerongen, et al., “Pathogenesis of influenza A/H5N1 virus infection in ferrets differs between intranasal and intratracheal routes of inoculation,” Am. J. Pathol., 179, 30-36 (2011).CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Z. Li, S. A. Rubin, R. E. Taffs, et al., “Mouse neurotoxicity test for vaccinia-based smallpox vaccines,” Vaccine, 22, 1486-1493 (2004).CrossRefPubMedGoogle Scholar
  33. 33.
    X. Nassif, S. Bourdoulous, E. Eugene, and P. O. Couraud, “How do extracellular pathogens cross the blood-brain barrier?” Trends. Microbiol., 10, 227-232 (2002).CrossRefPubMedGoogle Scholar
  34. 34.
    R. B. Meeker, K. Williams, D. A. Killebrew, and L. C. Hudson, “Cell trafficking through the choroid plexus,” Cell. Adh. Migr., 6, 390-396 (2012).CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    P. G. McMenamin, R. J. Wealthall, M. Deverall, et al., “Macrophages and dendritic cells in the rat meninges and choroid plexus: three-dimensional localization by environmental scanning electron microscopy and confocal microscopy,” Cell. Tissue Res., 313, 259-269 (2003).CrossRefPubMedGoogle Scholar
  36. 36.
    M. Takahashi, T. Yamada, K. Nakanishi, et al., “Influenza A virus infection of primary cultured cells from rat fetal brain,” Parkinsonism Relat. Disord., 3, 97-102 (1997).CrossRefPubMedGoogle Scholar
  37. 37.
    D. Karussis and P. Petrou, “The spectrum of postvaccination inflammatory CNS demyelinating syndromes,” Autoimmun. Rev., 13, 215-224 (2014).CrossRefPubMedGoogle Scholar
  38. 38.
    F. Aloisi, F. Ria, and L. Adorini, “Regulation of T-cell responses by CNS antigen-presenting cells: different roles for microglia and astrocytes,” Immunol. Today, 21, 141-147 (2000).CrossRefPubMedGoogle Scholar
  39. 39.
    S. S. Ousman and P. Kubes, “Immune surveillance in the central nervous system,” Nat. Neurosci., 15, 1096-1101 (2012).CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  • I. Maslovarič
    • 1
  • A. Stojkovič
    • 1
    • 2
  • D. Kosanovič
    • 1
  • D. Markovič
    • 3
  • V. Ilič
    • 3
  • K. Jovanova-Nelič
    • 1
  1. 1.Biomedical Center of the Institute TorlakBelgradeSerbia
  2. 2.Faculty of PharmacyUniversity of Bijeljina, Bijeljina, Republika Srpska, Bosnia and HerzegovinaBelgradeSerbia
  3. 3.Institute for Medical ResearchUniversity of BelgradeBelgradeSerbia

Personalised recommendations