Skip to main content
Log in

EEG Activity during Realization of Manual Movements by Individuals with Different Characteristics of the Alpha Rhythm

  • Published:
Neurophysiology Aims and scope

We examined 105 19- to 21-year-old men with a high or low individual modal alpha-frequency in their background EEGs. Latencies of the sensorimotor simple and complex (choice) reactions, rate capabilities of the nervous processes in the tapping test, and spectral power and coherence of the frequency EEG components were estimated. Estimations were obtained for each examined person in the resting state and during finger movements with a force loading (bending of the fingers in the fist and their spreading). Men with relatively high background modal frequencies of the alpha rhythm were characterized by a higher level of the attention selectivity and more local modifications of EEG activity related to realization of manual movements. Somewhat less-differentiated patterns of cortical activation were typical of persons with lower modal alpha-frequencies; this may correlate with a lower plasticity of the cerebral processes under conditions of the control of manual motor activity with force loading and maintenance of the pre-set movement rate. Men with higher modal alpha-frequencies demonstrated better rate indices in the performance of sensorimotor reactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. A. I. Kostykov, L. A. Bugaychenko, I. Kalezic, et al., “Effects in feline gastrocnemius-soleus motoneurones induced by muscle fatigue,” Exp. Brain Res., 163, 284-294 (2005).

    Article  Google Scholar 

  2. A. V. Gorkovenko, “Effect of tonic efforts developed by the hand on functional relations between the cortical regions in humans,” Fiziol. Zh., 52, No. 2, 30-31 (2006).

    Google Scholar 

  3. A. V. Kurganskii and P. P. Grigal, “Targeted corticocortical functional interactions within early stages of serial learning in adults and 7- to 8-year-old children,” Fiziol. Chel., 36, No. 4, 44-56 (2010).

    CAS  Google Scholar 

  4. A. G. Morenko, I. Ya. Kotsan, and O. S. Pavlovich, “Cortical activation processes in men with high and low background individual frequencies of the alpha rhythm in the course of sensorimotor activity of different complexity,” Fiziol. Zh., 59, No. 5, 41-49 (2013).

    CAS  PubMed  Google Scholar 

  5. A. G. Morenko, “Brain processes during the perception of sensory signals in men with high and low output α-frequencies,” Ann. Neurosci., 21, No. 4, 144-149 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  6. G. N. Boldyreva, L. A. Zhavoronkova, Ye. V. Sharova, et al., “An fMRT and EEG study of reactions of the brain of healthy humans to functional loadings,” Fiziol. Chel., 35, No. 3, 20-30 (2009).

  7. N. D. Sorokina, G. V. Selitskii, and N. S. Kositsyn, “Neurobiological studies of bioelectrical brain activity within the gamma rhythm range in humans,” Usp. Fiziol. Nauk, 37, No. 3, 3-10 (2006).

    CAS  PubMed  Google Scholar 

  8. O. M. Bazanova and M. B. Shtark, “Biocontrol in optimization of the psychomotor reactivity. Comunication 1. Comparative analysis of the biocontrol and routine executive practice,” Fiziol. Chel., 33, No. 3, 1-9 (2007).

    Google Scholar 

  9. O. M. Bazanova and L. I. Aftanas, “Individual indices of EEG alpha-activity and the nonverbal creativity,” Sechenov Ros. Fiziol. Zh., 93, No. 1, 14-26 (2007).

    CAS  Google Scholar 

  10. A. P. Anokhin, V. Muller, and U. Lindenbergeretal, “Genetic influences on dynamic complexity of brain oscillations,” Neurosci. Lett., 397, Nos. 1-2, 93-98 (2006).

    Article  CAS  PubMed Central  Google Scholar 

  11. J. C. Christian, S. Morzorati, and J. A. Norton, et al., “Genetic analysis of the resting electroencephalographic power spectrum in humans twins,” J. Psychophysiol., 33, 584-591 (1996).

    Article  CAS  Google Scholar 

  12. R. C. Clark, D. Veltmeyer, R. J. Hamilton, et al., “Spontaneous alpha peak frequency predicts working memory performance across the age span,” Int. J. Psychophysiol., 53, No. 1, 1-9 (2004).

    Article  Google Scholar 

  13. G. S.Hooper, “Comparison of the distributions of classical and adaptively aligned EEG power spectra,” Int. J. Psychophysiol., 55, No. 2, 179-189 (2005).

    Article  CAS  PubMed  Google Scholar 

  14. C. M. Smit, M. J. Wright, and N. K. Hanselletal., “Genetic variation of individual alpha frequency (IAF) and alpha power in a large adolescent twin sample,” Int. J. Psychophysiol., 61, No. 2, 235-243 (2006).

    Article  PubMed  Google Scholar 

  15. R. Kristeva, V. Chakarov, and F. Loschetal, “Electroencephalographic spectral power in writer’s cramp patients: evidence for motor cortex malfunctioning during the cramp,” NeuroImage, 27, No. 3, 706-714 (2005).

    Article  PubMed  Google Scholar 

  16. Ye. A. Umryukhin, I. I. Korobeinikova, and N. A. Karatygin, Successfulness of the performance of test tasks by students with different spectral characteristics of alpha rhythm in background EEGs,” Fiziol. Chel., 35, No. 5, 33-39 (2009).

    Google Scholar 

  17. W. Klimesch, P.Sauseng, and S.Hanslmayr, “EEG alpha oscillations: the inhibition–timing hypothesis,” Brain Res. Rev., 53, 63-88 (2007).

    Article  PubMed  Google Scholar 

  18. E. Angelakis, J. F. Lubar, and S. Stathopoulouetal, “Peak alpha frequency: an electroencephalographic measure of cognitive preparedness,” Clin. Neurophysiol., 115, 887-897 (2004).

    Article  PubMed  Google Scholar 

  19. A. Ya. Kaplan and S. V. Borisov, “Dynamics of the segmental characteristics of alpha activity in EEG of humans in the resting state and upon cognitive loadings,” Zh. Vyssh. Nerv. Deyat., 53, No. 1, 22-32 (2003).

    Google Scholar 

  20. M. N. Rusalova, “Functional asymmetry of the brain: Emotions and activation,” Usp. Fiziol. Nauk, 34, No. 5, 93-112 (2003).

    CAS  PubMed  Google Scholar 

  21. M. P. Anderson, T. Mochizuki, J. Xie, et al., “Thalamic Cav3.1 T-type Ca2+ channel plays a crucial role in stabilizing sleep,” Proc. Natl. Acad. Sci. USA, 102, No. 5, 1743-1748 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. A. J. Page, T. A. O’Donnell, and L. A. Blackshaw, “Inhibition of mechanosensitivity in visceral primary afferents by GABA(B) receptors involves calcium and potassium channels,” Neuroscience, 137, No. 2, 627-636 (2006).

    Article  CAS  PubMed  Google Scholar 

  23. D. J. Sperge, “Calcium and small-conductance calcium activated potassium channels in gonadotropin-releasing hormone neurons before, during, and after puberty,” J. Endocrinol., 148, No. 5, 2383-2390 (2007).

    Article  Google Scholar 

  24. C. Bellone and R. A. Nicoll, “Rapid bidirectionals witching of synaptic NMDA receptors,” Neuron, 55, No. 5, 779-785 (2007).

    Article  CAS  PubMed  Google Scholar 

  25. S. C. Ng and P. Raveendran, “EEG peak alpha frequency as an indicator for physical fatigue,” Abstracts of 11th Mediterranean Conference on Medical and Biomedical Engineering and Computing, Medicon, 16, 517-520 (2007).

  26. L. A. Zhavoronkova, Dextrals/Sinistrals. Interhemisphere Asymmetry of Brain Potentials in Humans, Ekoinvest, Krasnodar (2009).

  27. V. G. Kamenskaya, Time in the Process of Reflection as a Factor of Organization of the Targeted Auditory-Motor Reactions in Humans, Abstract of Doctoral Thesis for Psychol. Sciences, Moscow (1995).

  28. A. V. Klimash, M. N. Tsitseroshin, A. N. Shepovalnikov, et al., “Disorders in the spatial organization of electrical brain activity in patients suffering from severe craniocerebral trauma with different manifestations of the consciousness suppression,” Fiziol. Chel., 36, No. 5, 49-65 (2010).

    CAS  Google Scholar 

  29. G. Buzsáki, Rhythms of the Brain, Oxford, New York (2006).

    Book  Google Scholar 

  30. K. S. Tebenova, “A study of bioelectrical cerebral activity in telephone station operators,” Sovrem. Probl. Nauki Obraz., 4, 138-141 (2009).

    Google Scholar 

  31. E. A. Kostandlov and Y. A. Cheremushkin, “Changes in low- and high-frequency oscillations of the alpha range within intervals between significant visual stimuli,” Fiziol. Chel., 39, No. 4, 5-12 (2013).

    Google Scholar 

  32. F. Pulvermuller, N. Birbaumer, W. Lutzenberger, et al., “High-frequency brain activity: its possible role in attention, perception and language processing,” Prog. Neurobiol., 52, No. 5, 427-445 (1997).

    Article  CAS  PubMed  Google Scholar 

  33. G. Pfurtscheller and T. H. Lopes da Silva, “Event-related EEG/MEG synchronization and desynchronization: basic principles,” Clin. Neurophysiol., 110, No. 11, 1842-1857 (1999).

    Article  CAS  PubMed  Google Scholar 

  34. M. Ye. Ioffe, “Cerebral mechanisms of formation of novel movements in the course of learning: Evolution of classical concepts,” Zh. Vyssh. Nerv. Deyat., 53, No. 1, 5-21 (2003).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. G. Morenko.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morenko, A.G. EEG Activity during Realization of Manual Movements by Individuals with Different Characteristics of the Alpha Rhythm. Neurophysiology 49, 143–150 (2017). https://doi.org/10.1007/s11062-017-9643-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11062-017-9643-9

Keywords

Navigation