Neurophysiology

, Volume 49, Issue 1, pp 78–89 | Cite as

Features of EEG Activity Related to Realization of Cyclic Unimanual and Bimanual Hand Movements in Humans

  • T. Tomiak
  • A. V. Gorkovenko
  • V. S. Mishchenko
  • D. A. Vasilenko
Article
  • 28 Downloads

In 10 tested dextral subjects, EEG activity was recorded during the performance of unimanual and bimanual cyclic movements of the hands and fingers. The movements corresponded to clenching the fingers into a fist and the subsequent unclenching of the fingers. The test consisted of four successive stages, the resting state, movement of the left hand, that of the right hand, and movement of both hands. The dependences between the spectral power and coherence of the respective EEG samples on the type of the test performed, on the type of the movement (uni- or bimanual), and on the laterality of the latter in the case of the unimanual movement were examined. The results obtained allow us to propose the following conclusions: (i) α and β EEG rhythms are characterized by different functional importance with respect to manual motor activity; (ii) neural control of bimanual movements cannot be considered “a sum of the controls” of unimanual movements, and (iii) control of bimanual movements may be largely based on the control of the movement by a subdominant upper limb.

Keywords

bimanual and unimanual movements shoulder and elbow joints EMG EEG spectral power coherence cyclic movements 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    N. V. Dounskaia, K. G. Nogueira, S. P. Swinnen, and E. Drummond, “Limitations on coupling of bimanual movements caused by arm dominance: When the muscle homology principle fails,” J. Neurophysiol., 103, No. 4, 2027-2038 (2010).CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    T. I. Abramovich, A. V. Gorkovenko, I. V. Vereshchaka, et al., “Peculiarities of activation of human muscles in realization of cyclic bimanual movements with different organization of the cycles,” Neurophysiology, 48, No. 1, 31-42 (2016).CrossRefGoogle Scholar
  3. 3.
    J. Long, T. Tazoe, D. S. Soteropoulos, and M. A. Perez, “Interhemispheric connectivity during bimanual isometric force generation,” J. Neurophysiol., 115, 1196- 1207 (2015).CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    D. J. Serrien and M. M. Sovijärvi-Spapé, “Hemispheric asymmetries and the control of motor sequences,” Behav. Brain Res., 283, 30-36 (2015).CrossRefPubMedGoogle Scholar
  5. 5.
    B. A. Kay, J. A. Kelso, E. L. Saltzman, and G. Schoener, “Space-time behavior of single and bimanual rhythmical movements: data and limit cycle model,” J. Exp. Psychol. Human Percept. Perform., 13, No. 2, 178-192 (1987).CrossRefGoogle Scholar
  6. 6.
    S. C. de Oliveira, “The neuronal basis of bimanual coordination: recent neurophysiological evidence and functional models,” Acta Psychol., 110, Nos. 2/3, 139-159 (2002).CrossRefGoogle Scholar
  7. 7.
    J. D. Wong, E. T. Wilson, D. A. Kistemaker, and P. L. Gribble, “Bimanual proprioception: are two hands better than one?” J. Neurophysiol., 111, No. 6, 1362-1368 (2014).CrossRefPubMedGoogle Scholar
  8. 8.
    Y. Li, O. Levin, A. Forner-Cordero, R. Ronsse, and S. P. Swinnen, “Coordination of complex bimanual multijoint movements under increasing cycling frequencies: the prevalence of mirror-image and translational symmetry,” Acta Psychol., 130, No. 3, 183-195 (2009).CrossRefGoogle Scholar
  9. 9.
    V. Garkavenko, O. Man’kovskaya, T. Omel’chenko, et al., “Effect of cold stimulation of the arm fingers on the spectral/coherent EEG characteristics in humans,” Neurophysiology, 40, No. 3, 228-230 (2008).CrossRefGoogle Scholar
  10. 10.
    V. Garkavenko, E. Man’kovskaya, T. Omel’chenko, et al., “Modifications of EEG in humans performing cyclic movements by the fingers of the right arm: Effect of local contralateral cooling,” Neurophysiology, 40, Nos. 5/6, 369-376 (2008).CrossRefGoogle Scholar
  11. 11.
    C. Gerloff, J. Richard, J. Hadley, et al., “Functional coupling and regional activation of human cortical motor areas during simple, internally paced and externally paced finger movements,” Brain, 121, No. 8, 1513-1531 (1998).CrossRefPubMedGoogle Scholar
  12. 12.
    S. Schaal, D. Sternad, R. Osu, and M. Kawato, “Rhythmic arm movement is not discrete,” Nat. Neurosci., 7, No. 10, 1136-1143 (2004).CrossRefPubMedGoogle Scholar
  13. 13.
    E. G. James, “Nonstationarity of stable states in rhythmic bimanual coordination,” Motor Control, 18, No. 2, 184-198 (2014).CrossRefPubMedGoogle Scholar
  14. 14.
    R. R. Walsh, S. L. Small, E. E. Chen, and A. Solodkin, “Network activation during bimanual movements in humans,” NeuroImage, 43, No. 3, 540-553 (2008).CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    M. Toyokura, I. Muro, T. Komiya, and M. Obara, “Relation of bimanual coordination to activation in the sensorimotor cortex and supplementary motor area: analysis using functional magnetic resonance imaging,” Brain Res. Bull., 48, No. 2, 211-217 (1999).CrossRefPubMedGoogle Scholar
  16. 16.
    F. G. Andres, T. Mima, A. E. Schulman, et al., “Functional coupling of human cortical sensorimotor areas during bimanual skill acquisition,” Brain, 122, No. 5, 855-870 (1999).CrossRefPubMedGoogle Scholar
  17. 17.
    M. A. Perez, D. S. Soteropoulos, and S. N. Baker, “Corticomuscular coherence during bilateral isometric arm voluntary activity in healthy humans,” J. Neurophysiol., 107, No. 8, 2154-2162 (2012).CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    T. W. Boonstra, “The potential of corticomuscular and intermuscular coherence for research on human motor control,” Front. Human Neurosci., 7, 855 (2013).CrossRefGoogle Scholar
  19. 19.
    B. A. Conway, D. M. Halliday, S. F. Farmer, et al., “Synchronization between motor cortex and spinal motoneuronal pool during the performance of a maintained motor task in man,” J. Physiol., 489, No. 3, 917-924 (1995).CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    A. M. Amjad, D. M. Halliday, J. R. Rosenberg, and B. A. Conway, “An extended difference of coherence test for comparing and combining several independent coherence estimates: theory and application to the study of motor units and physiological tremor,” J. Neurosci. Methods, 73, No. 1, 69-79 (1997).CrossRefPubMedGoogle Scholar
  21. 21.
    A. de Rugy and D. Sternad, “Interaction between discrete and rhythmic movements: reaction time and phase of discrete movement initiation during oscillatory movements,” Brain Res., 994, No. 2, 160-174 (2003).CrossRefPubMedGoogle Scholar
  22. 22.
    K. von Carlowitz-Ghori, Z. Bayraktaroglu, F. U. Hohlefeld, et al., “Corticomuscular coherence in acute and chronic stroke,” Clin. Neurophysiol., 125, No. 6, 1182-1191 (2014).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • T. Tomiak
    • 1
  • A. V. Gorkovenko
    • 2
  • V. S. Mishchenko
    • 1
  • D. A. Vasilenko
    • 2
  1. 1.Academy of Physical Education and SportsGdanskPoland
  2. 2.Bogomolets Institute of Physiology of the NAS of UkraineKyivUkraine

Personalised recommendations