Skip to main content

Advertisement

Log in

Effects of Hindbrain Infusion of an Estrogen Receptor Antagonist on Estrogenic Modulation of Eating Behavior

  • Published:
Neurophysiology Aims and scope

Estradiol (E2) inhibits eating behavior in females via activating estrogen receptors (ERs) within the brain. Activation of hindbrain ERαs has been shown to be sufficient to inhibit eating behavioral pattern. To investigate the involvement of hindbrain ERαs in estrogenic control of eating behavior, intracerebroventricular infusion (4th i.c.v.) of an estrogen receptor antagonist, ICI 182780 (ICI), was performed in ovariectmized female rats. Significantly lower daily food intake was observed in rats after estradiol benzoate (EB) injections. The effect of EB on food intake was significantly compromised by 4th i.c.v. infusions of both 4 and 8 nM ICI solutions. The results suggest that hindbrain infusions of ICI can significantly attenuate the inhibitory effect of E2 on food intake. Importantly, 4th i.c.v. infusions during 12 days exerted no effect per se on eating. Further, there was no difference in the number of ERα immunopositive neurons in the selected hypothalamic nuclei and nucl. tractus solitarius. We conclude that the 4th i.c.v. infusions with ICI attenuated the exogenous estrogenic effect on food intake in ovariectomized rats, and the hindbrain is an important site pro viding estrogenic control of food intake.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. C. B. Saper, T. C. Chou, and J. K. Elmquist, “The need to feed: homeostatic and hedonic control of eating,” Neuron, 36, 199-211 (2002).

    Article  CAS  PubMed  Google Scholar 

  2. H. R. Berthoud, “Mind versus metabolism in the control of food intake and energy balance,” Physiol. Behav., 81, 781-793 (2004).

    Article  CAS  PubMed  Google Scholar 

  3. D. W. Pfaff, N. Vasudevan, H. K. Kia, et al., “Estrogens, brain and behavior: studies in fundamental neurobiology and observations related to women’s health,” J. Steroid Biochem. Mol. Biol., 74, 365-373 (2000).

    Article  CAS  PubMed  Google Scholar 

  4. L. Asarian and N. Geary, “Sex differences in the physiology of eating,” Am. J. Physiol. Regulat. Integr. Comp. Physiol., 305, R1215-R1267 (2013).

    Article  CAS  Google Scholar 

  5. S. Thammacharoen, T. A. Lutz, N. Geary, and L. Asarian, “Hindbrain administraion of estradiol inhibits feeding and activates ERα-expressing cells in the NTS of ovariectomized rats,” Endocrinology, 149, 1609-1617 (2008).

    Article  CAS  PubMed  Google Scholar 

  6. L. Asarian, S. Thammacharoen, T. A. Lutz, and N. Geary, “Selective RNAi knock-down of estrogen receptor-α (ER-α) neurons in the nucleus tractus solitarii (NTS) eliminates estradiol’s (E2) inhibitory effect on food intake in ovariectomized (OVX) rats,” Appetite, 52, 817 (2009).

    Google Scholar 

  7. L. Asarian, S. Thammacharoen, T. A. Lutz, and N. Geary, “Knock-down of estrogen receptor-α (ERα) neurons in the nucleus tractus solitarii (NTS) eliminates CCK induced c-Fos expression in the paraventricular nucleus of hypothalamus (PVN),” Appetite, 54, 632 (2010).

    Article  Google Scholar 

  8. H. M. Rivera and L. A. Eckel, “Activation of central, but not peripheral, estrogen receptor is necessary for estradiol’s anorexigenic effect in ovariectomized rats,” Endocrinology, 151, 5680-5688 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. J. E. Blevins, M. W. Schwartz, and D. G. Baskin, “Evidence that paraventricular nucleus oxytocin neurons link hypothalamic leptin action to caudal brainstem nuclei controlling meal size,” Am. J. Physiol. Regulat. Integr. Comp. Physiol., 287, R87-R96 (2004).

    Article  CAS  Google Scholar 

  10. L. Asarian and N. Geary, “Cyclic estradiol treatment normalized body weight and restores physiological patterns of spontaneous feeding and sexual receptivity,” Horm. Behav., 42, 461-471 (2002).

    Article  CAS  PubMed  Google Scholar 

  11. G. Paxinos and C. Watson, The Rat Brain in Stereotaxic Coordination, Academic Pres, California (1998).

    Google Scholar 

  12. G. N. Wade and I. Zucker, “Modulation of food intake and locomotor activity in female rats by diencephalic hormone implants,” J. Comp. Physiol. Psychol., 72, 328-336 (1970).

    Article  CAS  PubMed  Google Scholar 

  13. A. A. Nunez, J. M. Gray, and G. N. Wade, “Food intake and adipose tissue lipoprotein lipase activity after hypothalamic estradiol benzoate implants in rats,” Physiol. Behav., 25, 595-598 (1980).

    Article  CAS  PubMed  Google Scholar 

  14. A. Dagnault and D. Richard, “Lesions of hypothalamic paraventricular nuclei do not prevent the effect of estrogen on energy and fat balance,”Am. J. Physiol., 267, E32-E38 (1994).

    CAS  PubMed  Google Scholar 

  15. A. Dagnault and D.Richard, “Involvement of the medial preoptic area in the anorectic action of estrogen,”Am. J. Physiol., 272, R311-R317 (1997).

    CAS  PubMed  Google Scholar 

  16. K. Palmaer and J. M. Gray, “Central vs. peripheral effects of estradiol on food intake and lipoprotein lipase activity in ovariectomized rats,” Physiol. Behav., 37, 187-189 (1986).

    Article  Google Scholar 

  17. P. C. Butera and R. J. Beikirch, “Central implants of dilute estradiol: independent effects on ingestive and reproductive behaviors of ovariectomized rats,” Brain Res., 491, 266-273 (1989).

    Article  CAS  PubMed  Google Scholar 

  18. P. C. Butera, D. M. Willard, and S. A. Raymond, “Effects of PVN lesion on the responsiveness of female rats to estradiol,” Brain Res., 576, 304-310 (1992).

    Article  CAS  PubMed  Google Scholar 

  19. B. J. Hrupka, G. P. Smith, and N. Geary, “Hypothalamic implants of dilute estrogen fail to reduce feeding in ovariectomized rats,” Physiol. Behav., 77, 233-241 (2002).

    Article  CAS  PubMed  Google Scholar 

  20. J. Santollo, A. M. Torregrossa, and L. A. Eckel, “Estradiol acts in the medial preoptic area, arcuate nucleus, and dorsal raphe nucleus to reduce food intake in ovariectomized rats,” Horm. Behav., 60, 86-93 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. L. A. Eckel and N. Geary,“Estrogen treatment increases feeding-induced c-Fos expression in the brain of ovariectomized rats,” Am. J. Physiol., 281, R738-R746 (2001).

    CAS  Google Scholar 

  22. L. A. Eckel, T. A. Houpt, and N. Geary,“Estradiol replacement increases CCK-induced c-Fos expression in the brains of ovariectomized rats,” Am. J. Physiol., 283, R1378-R1385 (2002).

    CAS  Google Scholar 

  23. L. Asarian and N. Geary, “Estradiol enhances cholecystokinin-dependent lipid-induced satiation and activates estrogen receptor-α-expressing cells in the nucleus tractus solitarius of ovariectomized rats,” Endocrinology, 148, 5656-5666 (2007).

    Article  CAS  PubMed  Google Scholar 

  24. G. N. Wade and H. W. Heller, “Tamoxifen mimics the effects of estradiol on food intake, body weight, and body composition in rats,” Am. J. Physiol. Regulat. Integr. Comp. Physiol., 264. R1219-R1223 (1993).

    CAS  Google Scholar 

  25. R. Meli, M. Pacilio, G. M. Raso, et al., Estrogen and raloxifene modulate leptin and its receptor in hypothalamus and adipose tissue from ovariectomized rats,” Endocrinology, 145, 3115-3121 (2004).

    Article  CAS  PubMed  Google Scholar 

  26. S. Movérare-Skrtic, A. E. Börjesson, H. H. Farman, “The estrogen receptor antagonist ICI 182,780 can act both as an agonist and an inverse agonist when estrogen receptor α AF-2 is modified,” Proc. Natl. Acad. Sci. USA, 111, 1180-1185 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  27. C. K. Osborne, H. Zhao, and S. A. Fuqua, “Selective estrogen receptor modulators: structure, function, and clinical use,” J. Clin. Oncol., 18, 3172-3186 (2000).

    Article  CAS  PubMed  Google Scholar 

  28. S. Dauvois, P. S. Danielian, R. White, and M. G. Parker, “Antiestrogen ICI 164,384 reduces cellular estrogen receptor content by increasing its turnover,” Proc. Natl. Acad. Sci. USA, 89, 4037-4041 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. M. K. Gibson, L. A. Nemmers, W. C. Jr. Beckman, et al., “The mechanism of ICI 164,384 antiestrogenicity involves rapid loss of estrogen receptor in uterine tissue,” Endocrinology, 129, 2000-2010 (1991).

  30. H. Htun, L. T. Holth, D. Walker, et al., “Direct visualization of the human estrogen receptor alpha reveals a role for ligand in the nuclear distribution of the receptor,” Mol. Biol. Cell, 10, 471-486 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. X. Long and K. P. Nephew, “Fulvestrant (ICI 182,780)-dependent interacting proteins mediate immobilization and degradation of estrogen receptoralpha,” J. Biol. Chem., 281, 9607-9615 (2006).

    Article  CAS  PubMed  Google Scholar 

  32. P. J. Shughrue, P. J. Scrimo, and I. Merchenthaler, “Evidence for the colocalization of estrogen receptor-beta mRNA and estrogen receptor-alpha immunoreactivity in neurons of the rat forebrain,” Endocrinology, 139, 5267-5270 (1998).

    Article  CAS  PubMed  Google Scholar 

  33. G. V. Childs, G. Unabia, and S. Komak, “Differential expression of estradiol receptors alpha and beta by gonadotropes during the estrous cycle,” J. Histochem. Cytochem., 49, 665-666 (2001).

    Article  CAS  PubMed  Google Scholar 

  34. C. V. Helena, M. de Oliveira Poletini, G. L. Sanvitto, et al., “Changes in alpha-estradiol receptor and progesterone receptor expression in the locus coeruleus and preoptic area throughout the rat estrous cycle,” J. Endocrinol., 188, 155-165 (2006).

    Article  CAS  PubMed  Google Scholar 

  35. L. Mendoza-Garcés, C. A. Mendoza-Rodríguez, F. Jiménez-Trejo, et al., “Differential expression of estrogen receptors in two hippocampal regions during the estrous cycle of the rat,” Anat. Rec., 294, 1913-1919 (2011).

    Article  Google Scholar 

  36. G. N. Wade, J. D. Blaustein, J. M. Gray, and J. M. Meredith, “ICI 182,780: a pure antiestrogen that affects behaviors and energy balance in rats without acting in the brain,” Am. J. Physiol. Regul. Integr. Comp. Physiol., 265, R1392-R1398 (1993).

    CAS  Google Scholar 

  37. G. N. Wade, J. B. Powers, J. D. Blaustein, and D. E. Green, “ICI 182,780 antagonizes the effects of estradiol on estrous behavior and energy balance in Syrian hamsters,” Am. J. Physiol. Regul. Integr. Comp. Physiol., 265, R1399-R1403 (1993).

    CAS  Google Scholar 

  38. S. Thammacharoen, T. A. Lutz, N. Geary, and L. Asarian, “Divergent effects of estradiol and the estrogen receptor-α agonist PPT on eating and activation of PVN CRH neurons in ovariectomized rats and mice,” Brain Res., 1268, 88-96 (2009).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Thammacharoen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thammacharoen, S., Kitchanukitwattana, P., Suwanapaporn, P. et al. Effects of Hindbrain Infusion of an Estrogen Receptor Antagonist on Estrogenic Modulation of Eating Behavior. Neurophysiology 49, 72–77 (2017). https://doi.org/10.1007/s11062-017-9631-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11062-017-9631-0

Keywords

Navigation