Advertisement

Neurophysiology

, Volume 49, Issue 1, pp 72–77 | Cite as

Effects of Hindbrain Infusion of an Estrogen Receptor Antagonist on Estrogenic Modulation of Eating Behavior

  • S. Thammacharoen
  • P. Kitchanukitwattana
  • P. Suwanapaporn
  • N. Chaiyabutr
Article

Estradiol (E2) inhibits eating behavior in females via activating estrogen receptors (ERs) within the brain. Activation of hindbrain ERαs has been shown to be sufficient to inhibit eating behavioral pattern. To investigate the involvement of hindbrain ERαs in estrogenic control of eating behavior, intracerebroventricular infusion (4th i.c.v.) of an estrogen receptor antagonist, ICI 182780 (ICI), was performed in ovariectmized female rats. Significantly lower daily food intake was observed in rats after estradiol benzoate (EB) injections. The effect of EB on food intake was significantly compromised by 4th i.c.v. infusions of both 4 and 8 nM ICI solutions. The results suggest that hindbrain infusions of ICI can significantly attenuate the inhibitory effect of E2 on food intake. Importantly, 4th i.c.v. infusions during 12 days exerted no effect per se on eating. Further, there was no difference in the number of ERα immunopositive neurons in the selected hypothalamic nuclei and nucl. tractus solitarius. We conclude that the 4th i.c.v. infusions with ICI attenuated the exogenous estrogenic effect on food intake in ovariectomized rats, and the hindbrain is an important site pro viding estrogenic control of food intake.

Keywords

ER antagonist ICI 182780 estradiol female rats hindbrain food intake 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. B. Saper, T. C. Chou, and J. K. Elmquist, “The need to feed: homeostatic and hedonic control of eating,” Neuron, 36, 199-211 (2002).CrossRefPubMedGoogle Scholar
  2. 2.
    H. R. Berthoud, “Mind versus metabolism in the control of food intake and energy balance,” Physiol. Behav., 81, 781-793 (2004).CrossRefPubMedGoogle Scholar
  3. 3.
    D. W. Pfaff, N. Vasudevan, H. K. Kia, et al., “Estrogens, brain and behavior: studies in fundamental neurobiology and observations related to women’s health,” J. Steroid Biochem. Mol. Biol., 74, 365-373 (2000).CrossRefPubMedGoogle Scholar
  4. 4.
    L. Asarian and N. Geary, “Sex differences in the physiology of eating,” Am. J. Physiol. Regulat. Integr. Comp. Physiol., 305, R1215-R1267 (2013).CrossRefGoogle Scholar
  5. 5.
    S. Thammacharoen, T. A. Lutz, N. Geary, and L. Asarian, “Hindbrain administraion of estradiol inhibits feeding and activates ERα-expressing cells in the NTS of ovariectomized rats,” Endocrinology, 149, 1609-1617 (2008).CrossRefPubMedGoogle Scholar
  6. 6.
    L. Asarian, S. Thammacharoen, T. A. Lutz, and N. Geary, “Selective RNAi knock-down of estrogen receptor-α (ER-α) neurons in the nucleus tractus solitarii (NTS) eliminates estradiol’s (E2) inhibitory effect on food intake in ovariectomized (OVX) rats,” Appetite, 52, 817 (2009).Google Scholar
  7. 7.
    L. Asarian, S. Thammacharoen, T. A. Lutz, and N. Geary, “Knock-down of estrogen receptor-α (ERα) neurons in the nucleus tractus solitarii (NTS) eliminates CCK induced c-Fos expression in the paraventricular nucleus of hypothalamus (PVN),” Appetite, 54, 632 (2010).CrossRefGoogle Scholar
  8. 8.
    H. M. Rivera and L. A. Eckel, “Activation of central, but not peripheral, estrogen receptor is necessary for estradiol’s anorexigenic effect in ovariectomized rats,” Endocrinology, 151, 5680-5688 (2010).CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    J. E. Blevins, M. W. Schwartz, and D. G. Baskin, “Evidence that paraventricular nucleus oxytocin neurons link hypothalamic leptin action to caudal brainstem nuclei controlling meal size,” Am. J. Physiol. Regulat. Integr. Comp. Physiol., 287, R87-R96 (2004).CrossRefGoogle Scholar
  10. 10.
    L. Asarian and N. Geary, “Cyclic estradiol treatment normalized body weight and restores physiological patterns of spontaneous feeding and sexual receptivity,” Horm. Behav., 42, 461-471 (2002).CrossRefPubMedGoogle Scholar
  11. 11.
    G. Paxinos and C. Watson, The Rat Brain in Stereotaxic Coordination, Academic Pres, California (1998).Google Scholar
  12. 12.
    G. N. Wade and I. Zucker, “Modulation of food intake and locomotor activity in female rats by diencephalic hormone implants,” J. Comp. Physiol. Psychol., 72, 328-336 (1970).CrossRefPubMedGoogle Scholar
  13. 13.
    A. A. Nunez, J. M. Gray, and G. N. Wade, “Food intake and adipose tissue lipoprotein lipase activity after hypothalamic estradiol benzoate implants in rats,” Physiol. Behav., 25, 595-598 (1980).CrossRefPubMedGoogle Scholar
  14. 14.
    A. Dagnault and D. Richard, “Lesions of hypothalamic paraventricular nuclei do not prevent the effect of estrogen on energy and fat balance,”Am. J. Physiol., 267, E32-E38 (1994).PubMedGoogle Scholar
  15. 15.
    A. Dagnault and D.Richard, “Involvement of the medial preoptic area in the anorectic action of estrogen,”Am. J. Physiol., 272, R311-R317 (1997).PubMedGoogle Scholar
  16. 16.
    K. Palmaer and J. M. Gray, “Central vs. peripheral effects of estradiol on food intake and lipoprotein lipase activity in ovariectomized rats,” Physiol. Behav., 37, 187-189 (1986).CrossRefGoogle Scholar
  17. 17.
    P. C. Butera and R. J. Beikirch, “Central implants of dilute estradiol: independent effects on ingestive and reproductive behaviors of ovariectomized rats,” Brain Res., 491, 266-273 (1989).CrossRefPubMedGoogle Scholar
  18. 18.
    P. C. Butera, D. M. Willard, and S. A. Raymond, “Effects of PVN lesion on the responsiveness of female rats to estradiol,” Brain Res., 576, 304-310 (1992).CrossRefPubMedGoogle Scholar
  19. 19.
    B. J. Hrupka, G. P. Smith, and N. Geary, “Hypothalamic implants of dilute estrogen fail to reduce feeding in ovariectomized rats,” Physiol. Behav., 77, 233-241 (2002).CrossRefPubMedGoogle Scholar
  20. 20.
    J. Santollo, A. M. Torregrossa, and L. A. Eckel, “Estradiol acts in the medial preoptic area, arcuate nucleus, and dorsal raphe nucleus to reduce food intake in ovariectomized rats,” Horm. Behav., 60, 86-93 (2011).CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    L. A. Eckel and N. Geary,“Estrogen treatment increases feeding-induced c-Fos expression in the brain of ovariectomized rats,” Am. J. Physiol., 281, R738-R746 (2001).Google Scholar
  22. 22.
    L. A. Eckel, T. A. Houpt, and N. Geary,“Estradiol replacement increases CCK-induced c-Fos expression in the brains of ovariectomized rats,” Am. J. Physiol., 283, R1378-R1385 (2002).Google Scholar
  23. 23.
    L. Asarian and N. Geary, “Estradiol enhances cholecystokinin-dependent lipid-induced satiation and activates estrogen receptor-α-expressing cells in the nucleus tractus solitarius of ovariectomized rats,” Endocrinology, 148, 5656-5666 (2007).CrossRefPubMedGoogle Scholar
  24. 24.
    G. N. Wade and H. W. Heller, “Tamoxifen mimics the effects of estradiol on food intake, body weight, and body composition in rats,” Am. J. Physiol. Regulat. Integr. Comp. Physiol., 264. R1219-R1223 (1993).Google Scholar
  25. 25.
    R. Meli, M. Pacilio, G. M. Raso, et al., Estrogen and raloxifene modulate leptin and its receptor in hypothalamus and adipose tissue from ovariectomized rats,” Endocrinology, 145, 3115-3121 (2004).CrossRefPubMedGoogle Scholar
  26. 26.
    S. Movérare-Skrtic, A. E. Börjesson, H. H. Farman, “The estrogen receptor antagonist ICI 182,780 can act both as an agonist and an inverse agonist when estrogen receptor α AF-2 is modified,” Proc. Natl. Acad. Sci. USA, 111, 1180-1185 (2014).CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    C. K. Osborne, H. Zhao, and S. A. Fuqua, “Selective estrogen receptor modulators: structure, function, and clinical use,” J. Clin. Oncol., 18, 3172-3186 (2000).CrossRefPubMedGoogle Scholar
  28. 28.
    S. Dauvois, P. S. Danielian, R. White, and M. G. Parker, “Antiestrogen ICI 164,384 reduces cellular estrogen receptor content by increasing its turnover,” Proc. Natl. Acad. Sci. USA, 89, 4037-4041 (1992).CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    M. K. Gibson, L. A. Nemmers, W. C. Jr. Beckman, et al., “The mechanism of ICI 164,384 antiestrogenicity involves rapid loss of estrogen receptor in uterine tissue,” Endocrinology, 129, 2000-2010 (1991).Google Scholar
  30. 30.
    H. Htun, L. T. Holth, D. Walker, et al., “Direct visualization of the human estrogen receptor alpha reveals a role for ligand in the nuclear distribution of the receptor,” Mol. Biol. Cell, 10, 471-486 (1999).CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    X. Long and K. P. Nephew, “Fulvestrant (ICI 182,780)-dependent interacting proteins mediate immobilization and degradation of estrogen receptoralpha,” J. Biol. Chem., 281, 9607-9615 (2006).CrossRefPubMedGoogle Scholar
  32. 32.
    P. J. Shughrue, P. J. Scrimo, and I. Merchenthaler, “Evidence for the colocalization of estrogen receptor-beta mRNA and estrogen receptor-alpha immunoreactivity in neurons of the rat forebrain,” Endocrinology, 139, 5267-5270 (1998).CrossRefPubMedGoogle Scholar
  33. 33.
    G. V. Childs, G. Unabia, and S. Komak, “Differential expression of estradiol receptors alpha and beta by gonadotropes during the estrous cycle,” J. Histochem. Cytochem., 49, 665-666 (2001).CrossRefPubMedGoogle Scholar
  34. 34.
    C. V. Helena, M. de Oliveira Poletini, G. L. Sanvitto, et al., “Changes in alpha-estradiol receptor and progesterone receptor expression in the locus coeruleus and preoptic area throughout the rat estrous cycle,” J. Endocrinol., 188, 155-165 (2006).CrossRefPubMedGoogle Scholar
  35. 35.
    L. Mendoza-Garcés, C. A. Mendoza-Rodríguez, F. Jiménez-Trejo, et al., “Differential expression of estrogen receptors in two hippocampal regions during the estrous cycle of the rat,” Anat. Rec., 294, 1913-1919 (2011).CrossRefGoogle Scholar
  36. 36.
    G. N. Wade, J. D. Blaustein, J. M. Gray, and J. M. Meredith, “ICI 182,780: a pure antiestrogen that affects behaviors and energy balance in rats without acting in the brain,” Am. J. Physiol. Regul. Integr. Comp. Physiol., 265, R1392-R1398 (1993).Google Scholar
  37. 37.
    G. N. Wade, J. B. Powers, J. D. Blaustein, and D. E. Green, “ICI 182,780 antagonizes the effects of estradiol on estrous behavior and energy balance in Syrian hamsters,” Am. J. Physiol. Regul. Integr. Comp. Physiol., 265, R1399-R1403 (1993).Google Scholar
  38. 38.
    S. Thammacharoen, T. A. Lutz, N. Geary, and L. Asarian, “Divergent effects of estradiol and the estrogen receptor-α agonist PPT on eating and activation of PVN CRH neurons in ovariectomized rats and mice,” Brain Res., 1268, 88-96 (2009).CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • S. Thammacharoen
    • 1
  • P. Kitchanukitwattana
    • 1
  • P. Suwanapaporn
    • 1
  • N. Chaiyabutr
    • 1
  1. 1.Department of Physiology, Faculty of Veterinary ScienceChulalongkorn UniversityBangkokThailand

Personalised recommendations