Advertisement

Neurophysiology

, Volume 49, Issue 1, pp 44–52 | Cite as

Movement-Dependent Spatial Expansion of Visual Receptive Fields of Neurons of the Extrastriate Cortex

  • H. R. Aslanian
  • A. P. Antonian
  • B. A. Harutiunian-Kozak
  • A. V. Khachatryan
  • A. L. Ghazaryan
  • J. A. Kozak
  • D. K. Khachvankian
Article

The spatial structure of the receptive field (RF) of a visually sensitive neuron, as defined by presentation of stationary visual stimuli, predetermines in most cases central processing of visual information concerning moving visual images. In our study, properties of a group of neurons in the extrastriate cortical area 21a (≈18% of the examined sampling) with extremely small RF sizes (≈1.5 deg2) determined by stationary visual stimuli were investigated. It was found that spatial dimensions of each neuronal RFs may undergo manifold expansions; the neuronal response profiles depended strongly on the size, shape, and contrast of the applied moving stimuli. As a result, a high degree of diversification of neuronal response patterns depending of the shapes and contrasts of applied moving stimuli was observed. These data confirm the suggestion that the RFs of neurons in the extrastriate area 21a undergo temporary dynamic changes due to activation of surrounding neuronal groups/networks by moving visual stimuli. Thus, it is evident that processing of visual information in the course of visual image recognition is realized by integrated activity of a complex of the corresponding cortical networks of visually sensitive neurons.

Keywords

receptive field (RF) visually sensitive neuron moving stimulus RF dimension extrastriate cortex area 21a 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Xing and G. J. Gerstein, “Networks with lateral connectivity. I. Dynamic properties mediated by the balance of intrinsic excitation and inhibition,” J. Neurophysiol., 75, No. 1, 184-199 (1996).PubMedGoogle Scholar
  2. 2.
    J. Xing and G. J. Gerstein, “Networks with lateral connectivity. II. Development of neuronal grouping and corresponding receptive field changes,” J. Neurophysiol., 75, No. 1, 200-216 (1996).PubMedGoogle Scholar
  3. 3.
    J. Xing and G. J. Gerstein, “Networks with lateral connectivity. III. Plasticity and reorganization of somatosensory cortex,” J. Neurophysiol., 75, No. 1, 217-232 (1996).PubMedGoogle Scholar
  4. 4.
    H. Yao and C.-J. Li, “Clustered organization of neurons with similar extra-receptive field properties in the primary visual cortex,” Neuron, 35, No. 3, 547-553 (2002).CrossRefPubMedGoogle Scholar
  5. 5.
    D. J. Warren, A. Koulakov, and R. A. Normann, “Spatiotemporal encoding of a bar’s direction of motion by neural assembles in cat primary visual cortex,” Ann. Biomed. Eng., 32, No. 9, 1265-1275 (2004).CrossRefPubMedGoogle Scholar
  6. 6.
    B. A. Harutiunian-Kozak, A. B. Sharanbekian, A. L. Ghazaryan, et al., “Spatial summation processes in the receptive fields of visually driven neurons of the cat’s cortical area 21a,” Arch. Ital. Biol., 144, No. 1, 1-20 (2006).Google Scholar
  7. 7.
    H. R. Aslanian, D. K. Khachvankian, B. A. Harutiunian-Kozak et al., “Receptive field stationary structure and response patterns to moving stimuli of visually driven neurons in extrastriate area 21a of cat cortex,” Natl. Acad. Sci. RA, Electr. J. Nat. Sci., 21, No. 2, 87-92 (2013).Google Scholar
  8. 8.
    L. Galli, L. Chalupa, L. Maffei, and S. Bisti, “The organization of receptive fields in area 18 neurons of the cat varies with the spatio-temporal characteristics of the visual stimulus,” Exp. Brain Res., 71, No. 1, 1-17 (1988).CrossRefPubMedGoogle Scholar
  9. 9.
    A. F. Rossi and M. A. Paradiso, “Neural correlates of perceived brightness in the retina, lateral geniculate nucleus and striate cortex,” J. Neurosci., 19, No. 14, 6145-6156 (1999).PubMedGoogle Scholar
  10. 10.
    R. D. Freeman, J. Ohzawa, and G. Walker, “Beyond the classical receptive field in the visual cortex,” Prog. Brain Res., 134, No. 1, 157-170 (2001).CrossRefPubMedGoogle Scholar
  11. 11.
    A. Angelucci, J. B. Levitt, E. J. S. Walton, et al., “Circuits for local and global signal integration in primary visual cortex,” J. Neurosci., 22, No. 19, 8633-8646 (2002).PubMedGoogle Scholar
  12. 12.
    M. W. Pettet and C. D. Gilbert, “Dynamic changes in receptive field size in cat primary visual cortex,” Proc. Natl. Acad. Sci. USA, 89, No. 17, 8366-8370 (1992).CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    U. Polat and D. Sagi, “Lateral interactions between spatial channels: Suppression and facilitation revealed by lateral masking experiments,” Vision Res., 33, No. 7, 993-999 (1993).CrossRefPubMedGoogle Scholar
  14. 14.
    A. Das and C. D. Gilbert, “Receptive fields expansion in adult visual cortex is linked to dynamic changes in strength of cortical connections,” J. Neurophysiol., 74, No. 2, 779-792 (1995).PubMedGoogle Scholar
  15. 15.
    U. T. Eysel, D. Eyding, and G. Schweigart, “Repetitive optical stimulation elicits fast receptive field changes in mature visual cortex,” NeuroReport, 9, No. 5, 949-954 (1998).CrossRefPubMedGoogle Scholar
  16. 16.
    H. R. Aslanian, B. A. Harutiunian-Kozak, D. K. Khachvankian, et al., “Motion detector neurons in area 21a of the cat cortex,” Natl. Acad. Sci. RA, Electr. J. Nat. Sci., 22, No. 1, 145-149 (2014).Google Scholar
  17. 17.
    D. K. Khachvankian, B. A. Harutiunian-Kozak, H. R. Aslanian et al., “Dynamic changes in receptive field sizes of visually sensitive neurons in extrastriate area 21a,” Natl. Acad. Sci. RA, Electr. J. Nat. Sci., 23, No. 2, 42-46 (2014).Google Scholar
  18. 18.
    R. J. Tusa and L. A. Palmer, “Retinotopic organization of areas 20 and 21 in the cat,” J. Comp. Neurol., 193, No. 1, 147-164 (1980).CrossRefPubMedGoogle Scholar
  19. 19.
    C. Wang, W. J. Waleszczyk, W. Burke, and B. Dreher, “Modulatory influence of feedback projections from area 21a on neuronal activities in striate cortex of the cat,” Cerebr. Cortex, 10, No. 12, 1217-1232 (2000).CrossRefGoogle Scholar
  20. 20.
    P. O. Bishop, W. Kozak, and G. J. Vakkur, “Some quantitative aspects of the cat’s eye: axis and plane reference, visual field co-ordinates and optics,” J. Physiol., 163, No. 3, 466-502 (1962).CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    R. Fernald and R. Chase, “An improved method for plotting retinal landmarks and focusing the eyes,” Vision Res., 11, No. 1, 95-96 (1971).CrossRefPubMedGoogle Scholar
  22. 22.
    L. N. Thibos and W. R. Levick, “Bimodal receptive fields of cat retinal ganglion cells,” Vision Res., 23, No. 12, 1561-1572 (1983).CrossRefPubMedGoogle Scholar
  23. 23.
    J. I. Nelson and B. J. Frost, “Orientation selective inhibition from beyond the classic visual receptive field,” Brain Res., 139, No. 2, 359-365 (1978).CrossRefPubMedGoogle Scholar
  24. 24.
    C. D. Gilbert and T. N. Wiesel, “Columnar specificity of intrinsic horizontal and corticotectal connections in cat visual cortex,” J. Neurosci., 9, No. 7, 2432-2442 (1989).PubMedGoogle Scholar
  25. 25.
    D. Eyding, G. Schweigart, and U. T. Eysel, “Spatiotemporal plasticity of cortical receptive fields in response to repetitive visual stimulation in the adult cat,” Neuroscience, 112, No. 1, 195-215 (2002).CrossRefPubMedGoogle Scholar
  26. 26.
    J. M. Ishida, L. Schwabe, P. C. Bressloff, and A. Angellucci, “Response facilitation from “suppressive” receptive field surround of macaque V1 neurons,” J. Neurophysiol., 98, No. 4, 2168-2181 (2007).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • H. R. Aslanian
    • 1
  • A. P. Antonian
    • 1
  • B. A. Harutiunian-Kozak
    • 1
  • A. V. Khachatryan
    • 2
  • A. L. Ghazaryan
    • 1
  • J. A. Kozak
    • 3
  • D. K. Khachvankian
    • 1
  1. 1.Laboratory of Sensory Physiology, Institute of Applied Problems of PhysicsNational Academy of Sciences of ArmeniaYerevanArmenia
  2. 2.Department of Ophthalmology, Downstate Medical CenterState University of New YorkNew YorkUSA
  3. 3.Department of Neuroscience, Cell Biology and PhysiologyWright State UniversityDaytonUSA

Personalised recommendations