Advertisement

Neurophysiology

, Volume 49, Issue 1, pp 36–43 | Cite as

Contrast-Dependent Restructuring of Neuronal Visual Receptive Fields in the Cat Extrastriate Cortex

  • B. A. Harutiunian-Kozak
  • A. L. Ghazaryan
  • M. M. Momjian
  • D. K. Khachvankian
  • H. R. Aslanian
Article

Spatial modifications of neuronal visual receptive fields (RFs) in the cat extrastriate cortex were studied. The response properties and spatial organization of the RFs of area 21a neurons were investigated using visual stimuli of two opposite contrasts, with particular attention to the stationary structure of these RFs. It was found that the infrastructure of the RF of a visually sensitive neuron undergoes certain restructuring related to the contrast of the visual stimuli used. In most cases, discharge centers of the RF subfields changed their response profile and spatial localization within the RF depending on the stimulus contrast. Stationary RFs defined by presentation of flashing spots of two opposite contrasts (bright and dark) differed from each other quantitatively and qualitatively, indicating the influence of background illumination on the pattern of neuronal responses. It is hypothesized that the RF surrounding significantly influences central processing of incoming visual information and image recognition in the extrastriate cortex.

Keywords

extrastriate cortex visual receptive field (RF) stationary structure contrast spatial modifications RF surrounding 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. K. Hartline, “The response of single optic nerve fibers of the vertebrate eye to illumination of the retina,” Am. J. Physiol., 121, No. 2, 400-415 (1938).Google Scholar
  2. 2.
    H. K. Hartline, “The receptive field of the optic nerve fibers,” Am. J. Physiol., 130, No. 3, 690-699 (1940).Google Scholar
  3. 3.
    D. H. Hubel and T. N. Wiesel, “Receptive fields of single neurons in the cat’s striate cortex,” J. Physiol., 148, No. 3, 574-591 (1959).CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    D. H. Hubel and T. N. Wiesel, “Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex,” J. Physiol., 160, No. 1, 106-154 (1962).CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    D. H. Hubel and T. N. Wiesel, “Receptive fields and functional architecture in two nonstriate visual areas (18 and 19) of cat,” J. Physiol., 28, No. 2, 229-289 (1965).Google Scholar
  6. 6.
    D. Debanne, D. E. Shultz, and J. Fregnac, “Activity-dependent regulation of “on” and “off” responses in cat visual receptive fields,” J. Physiol., 508, No. 2, 523-548 (1998).CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    F. Mechler and D. J. Ringach, “On the classification of simple and complex cells,” Vis. Res., 42, No. 8, 1017-1033 (2002).CrossRefPubMedGoogle Scholar
  8. 8.
    J. R. Cavanaugh, W. Bair, and A. Movshon, “Nature and interaction of signals from the receptive field centre and surround in macaque V1 neurons,” J. Neurophysiol., 88, No. 5, 2530-2546 (2002).CrossRefPubMedGoogle Scholar
  9. 9.
    G. H. Henry, “Receptive field classes of cells in the striate cortex of the cat,” Brain Res., 133, No. 1, 1-28 (1977).CrossRefPubMedGoogle Scholar
  10. 10.
    L.A. Palmer and T. J. Davis, “Receptive field structure in cat striate cortex,” J. Neurophysiol., 46, No. 2, 260-276 (1981).PubMedGoogle Scholar
  11. 11.
    P. O. Bishop, J. S. Coombs, and G. H. Henry, “Receptive fields of simple cells in the cat striate cortex,” J. Physiol., 231, No. 1, 31-60 (1973).CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    J. Xing and G. A. Gerstein, “Networks with lateral connectivity. Development of neurons grouping and corresponding receptive field changes,” J. Neurophysiol., 75, No. 1, 200-215 (1996).PubMedGoogle Scholar
  13. 13.
    B. Dreher, A. Michalski, R. H. T. Ho, et al., “Processing of form and motion in area 21a of cat visual cortex,” Vis. Neurosci., 10, No. 1, 93-115 (1993).CrossRefPubMedGoogle Scholar
  14. 14.
    U. T. Eysel, D. Eyding, and G. Schweigart, “Repetitive optical stimulation elicits fast receptive field changes in mature visual cortex,” NeuroReport, 9, No. 5, 949-954 (1998).CrossRefPubMedGoogle Scholar
  15. 15.
    K. Suder, K. Funke, Y. Zhao, et al., “Spatial dynamics of receptive fields in cat primary visual cortex related to the temporal structure of thalamocortical feedforward activity,” Exp. Brain Res., 144, No. 4, 430-444 (2002).CrossRefPubMedGoogle Scholar
  16. 16.
    B. A. Harutiunian-Kozak, D. K. Khachvankian, G. G. Grigorian, et al., “Dynamic spatial organization of receptive fields of neurons in the 21a cortical area,” Neurophysiology, 42, No. 3, 175-184 (2010).CrossRefGoogle Scholar
  17. 17.
    C. D. Gilbert and T. N. Wiesel, “Receptive field dynamics in adult visual cortex,” Nature, 356, No. 6365, 150-152 (1992).CrossRefPubMedGoogle Scholar
  18. 18.
    A. Angelucci, J. B. Levitt, E. F. S. Walton, et al., “Circuits for local and global signal integration in primary visual cortex,” J. Neurosci., 22, 8633-8646 (2002).PubMedGoogle Scholar
  19. 19.
    M. W. Pettet and C. D. Gilbert, “Dynamic changes in receptive field size in cat primary visual cortex,” Proc. Natl. Acad. Sci. USA, 89, 8366-8370 (1992).CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    A. Das and C. D. Gilbert, “Receptive field expansion in adult visual cortex is linked to dynamic changes in strength of cortical connections,” J. Neurophysiol., 74, No. 2, 779-792 (1995).PubMedGoogle Scholar
  21. 21.
    B. J. Malone, V. R. Kumar, and D. L. Ringach, “Dynamics of receptive field size in primary visual cortex,” J. Neurophysiol., 97, No. 1, 407-414 (2007).CrossRefPubMedGoogle Scholar
  22. 22.
    D. K. Khachvankian, B. A. Harutiunian-Kozak, H. R. Aslanian et al., “Dynamic changes in receptive field sizes of visually sensitive neurons in extrastriate area 21a,” Eur. J. Nat. Sci., 2, No. 23, 42-46 (2014).Google Scholar
  23. 23.
    D. K. Khachvankian, H. R. Aslanian, A. P. Antonian, et al., “Regularities of visual receptive field spatial expansion at the application of moving stimuli, ”. Eur. J. Nat. Sci., 2, No. 25, 45-48 (2015).Google Scholar
  24. 24.
    D. K. Khachvankian, H. R. Aslanian, B. A. Harutiunian-Kozak et al., “Responses of cortical extrastriate area 21a neurons specialized in motion detection,” Neurophysiology, 47, No. 3, 19-25 (2015).CrossRefGoogle Scholar
  25. 25.
    P. O. Bishop, W. Kozak, and G. J. Vakkur, “Some quantitative aspects of the cat’s eye: axis and plane reference, visual field co-ordinates and optics,” J. Physiol., 163, No. 3, 466-502 (1962).CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    H. B. Barlow, R. Fitzhugh, and S. Kuffler, “Change of organization in the receptive fields of the cat’s retina during dark adaptation,” J. Physiol., 137, No. 3, 338-354 (1957).CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    J. T. McIlwain, “Receptive fields of optic tract axons and lateral geniculate cells: extent of barbiturate sensitivity,” J. Neurophysiol., 27, No. 6, 1154-1173 (1964).PubMedGoogle Scholar
  28. 28.
    C. Blakemore and E. Tobin, “Lateral inhibition between orientation detectors in cat visual cortex,” Exp. Brain Res., 15, No. 4, 439-440 (1972).CrossRefPubMedGoogle Scholar
  29. 29.
    C. Y. Li, Y. X Zhou, X. Pei, et al., “Extensive disinhibitory region beyond the classical receptive field of cat retinal ganglion cells,” Vis. Res., 32, No. 2, 219-228 (1992).CrossRefPubMedGoogle Scholar
  30. 30.
    C. L. Passaglia, C. Enroth-Cugell, and J. B. Troy, “Effects of remote stimulation on the mean firing rate of cat retinal ganglion cells,” J. Neuroscience, 21, No. 15, 5794-5803 (2001).PubMedGoogle Scholar
  31. 31.
    T. Akasaki, H. Sato, Y. Yoshimura, et al., “Suppressive effects of receptive field surround on neuronal activity in the cat primary visual cortex,” Neurosci. Res., 43, No. 3, 207-220 (2002).CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • B. A. Harutiunian-Kozak
    • 1
  • A. L. Ghazaryan
    • 1
  • M. M. Momjian
    • 1
  • D. K. Khachvankian
    • 1
  • H. R. Aslanian
    • 1
  1. 1.Laboratory of Sensory Physiology, Institute of Applied Problems of PhysicsNational Academy of Sciences of ArmeniaYerevanArmenia

Personalised recommendations