, Volume 49, Issue 1, pp 30–35 | Cite as

Effects of Stereotactic Introduction of Baclofen in the Medullary Cardiovascular Nuclei of Rats

  • L. M. Shapoval
  • O. V. Dmytrenko
  • A. M. Naumenko
  • T. L. Davydovska
  • V. F. Sagach

In rats anesthetized with urethane (1.7 g/kg, i. p.), we investigated the effects of stereotaxic microinjections of baclofen into the medullary nuclei involved in the neural control of cardiovascular activity (nuclei paramedianus, ambiguus, and reticularis lateralis). Changes in the hemodynamic parameters (systolic and diastolic blood pressure and heart rate) were measured. Injections of the above GABAB receptor agonist (10–7, 10–6, or 10–5 M, 0.1 μl) into the medullary cardiovascular nuclei was accompanied by changes in the blood pressure, the magnitude and direction of which depended not only on the baclofen concentration but also on the site of injection (into one nucleus or another). Injections of the agent into the nucl. ambiguus at a 10–7 M concentration resulted in an increase in the blood pressure, but a 10–5 M concentration provided significant reduction of the systolic and diastolic blood pressure. If baclofen was injected into the nucl. reticularis lat., the blood pressure also increased or decreased but the concentration dependence was opposite to the above described. Injections of the agent into the nucl. paramedianus were always accompanied by significant increases in the blood pressure. Changes in the heart rate following baclofen injections into the nuclei under study were insignificant. The specificities of the baclofen-induced effects are probably related to peculiarities of the functioning of GABAB receptors, the activation of which may mediate the effects of multiple neuronal mechanisms.


baclofen GABAB receptors concentration/amount dependence medulla oblongata hemodynamics 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. See and R. Ginzburg, “Skeletal muscle relaxants, ” Pharmacotherapy, 2, No. 28, 207-213 (2008)CrossRefGoogle Scholar
  2. 2.
    M. Brusberg, A. Ravnefjord, R. Martinsson, et al., “The GABA(B) receptor agonist, baclofen, and the positive allosteric modulator, CGP7930, inhibit visceral pain-related responses to colorectal distension in rats, ”Neuropharmacology, 56, No. 2, 362-367 (2009).CrossRefPubMedGoogle Scholar
  3. 3.
    A. F. Sved and Ju. C. Sved, “Endogenous GABA acts on GABAB receptors in nucleus tractus solitarius to increase blood pressure,” Brain Res., 526, No. 2, 235-240 (1990).CrossRefPubMedGoogle Scholar
  4. 4.
    A. Florentino, K. Varga, and G.Kunos, “Mechanism of the cardiovascular effects of GABAB receptor activation in the nucleus tractus solitarii of rats,” Brain Res., 535, 264–270 (1990).CrossRefPubMedGoogle Scholar
  5. 5.
    P. A. Brooks, S. R. Glaum, R. J. Miller, and K. M. Spyer, “The actions of baclofen on neurones and synaptic transmission in the nucleus tractus solitarii of the rat in vitro,” J. Physiol., 457, 115–129 (1992).CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    J. C. Callera, L. G. Bonagamba, A. Nosjean, et al., “Activation of GABA receptors in the NTS of awake rats reduces the gain of baroreflex bradycardia,” Auton. Neurosci., 84 , 58–67 (2000). CrossRefPubMedGoogle Scholar
  7. 7.
    W. Zhang, M. Herrera-Rosales, and S.Mifflin, “Chronic hypertension enhances the postsynaptic effect of baclofen in the nucleus tractus solitarius,” Hypertension, 49, 659-663 (2007).CrossRefPubMedGoogle Scholar
  8. 8.
    W. Zhang and S. Mifflin, “Chronic hypertension enhances presynaptic inhibition by baclofen in the nucleus of the solitary tract,” Hypertension, 55, 481-486 (2010).CrossRefPubMedGoogle Scholar
  9. 9.
    .B. Li., Liu Qing, X. Chengluan, et al., “GABAB receptor gene transfer into the nucleus tractus solitarii induces chronic blood pressure elevation in normotensive rats,” Circulation, 77, No. 10, 2558–2566 (2013).Google Scholar
  10. 10.
    T. S. Moreira, A. C. Takakura, and E. Colombari, “Important GABAergic mechanism within the NTS and the control of sympathetic baroreflex in SHR,” Autonom. Neurosci., 159, 62–70 (2011).CrossRefGoogle Scholar
  11. 11.
    G. Paxinos and C. Watson, The Rat Brain in Stereotaxic Coordinates, Academic Press, New York, (1982).Google Scholar
  12. 12.
    N. V. Radchenko, L. N. Shapoval, T. L. Davydovskaya, et al., “Features of GABAergic cardiovascular control provided by medullary neurons in rats,” Neurophysiology, 45, No. 5, 407-417 (2013).CrossRefGoogle Scholar
  13. 13.
    L. A. Chahl and S. B. Walker, “The effect of baclofen on the cardiovascular system of the rat,” Br. J. Pharmacol., 69, 631–637 (1980).CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Y. Takemoto, “Hindquarters vasoconstriction through central GABAB receptors in conscious rats,” Exp. Physiol., 88, No. 4, 491-497 (2003).CrossRefPubMedGoogle Scholar
  15. 15.
    K. Hayakawa, M. Kimura, and K. Kamata, “Mechanism underlying gamma-aminobutyric acid-induced antihypertensive effect in spontaneously hypertensive rats,” Eur. J. Pharmacol., 438, No. 1-2,107-113 (2002).CrossRefPubMedGoogle Scholar
  16. 16.
    F. Yao, C. Summers, S. T. O’Rourke, and C. Sun, “Angiotensin II increases GABAB receptor expression in nucleus tractus solitarii of rats,” Am. J. Physiol. Heart Circ. Physiol, 294, H2712-H2720 (2008).CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Q. Zhang., F. Yao, S. T. O’Rourke, et al., “Angiotensin II enhances GABAB receptor-mediated responses and expression in nucleus tractus solitarii of rats,” Am. J. Physiol. Heart Circ. Physiol., 297, H1837–H1844 (2009).Google Scholar
  18. 18.
    C. D. Landulpho, A. C Dias, and E. Colombari, “Cardiovascular mechanisms activated by microinjection of baclofen into NTS of conscious rats,” Am. J. Physiol. Heart Circ. Physiol., 284, H987–H993 (2003).Google Scholar
  19. 19.
    V. C. Chitravanshi, K. Kawabe, and H. N. Sapru, “GABA and glycine receptors in the nucleus ambiguus mediate tachycardia elicited by chemical stimulation of the hypothalamic arcuate nucleus,” Am. J. Physiol. Heart Circ. Physiol., 309, H174-H184 (2015).CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    R. J. Bateman, C. R. Boychuk, K. E. Phibin, and D. Mendelowitz, “Beta adrenergic receptor modulation of neurotransmisdsion to cardiac vagal neurons in the nucleus ambiguus,” Neuroscience , 210, 58-66 (2010).CrossRefGoogle Scholar
  21. 21.
    M. Zhang, Y. T. Wang, D. M. Vyas, et al., “Nicotinic cholinoceptor-mediated excitatory postsynaptic potentials in rat nucleus ambiguus,” Exp. Brain Res., 96, 83-88 (1993).CrossRefPubMedGoogle Scholar
  22. 22.
    R. Stoop, “Neuromodulation by oxytocin and vasopressin,” Neuron, 76, 142-159 (2012).CrossRefPubMedGoogle Scholar
  23. 23.
    R. Becker, I. Benes, U. Sure, et al., “Intrathecal baclofen alleviates autonomic dysfunction in severe brain injury,” J. Clin. Neurosci., 7, 316-319 (2000).CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • L. M. Shapoval
    • 1
  • O. V. Dmytrenko
    • 1
  • A. M. Naumenko
    • 2
  • T. L. Davydovska
    • 2
  • V. F. Sagach
    • 1
  1. 1.Bogomolets Institute of PhysiologyNational Academy of Sciences of UkraineKyivUkraine
  2. 2.Taras Shevchenko National UniversityKyivUkraine

Personalised recommendations