Skip to main content
Log in

Control of the Power of Strokes and Muscle Activities in Cyclic Rowing Movements (a Research using Rowing Simulators)

  • Published:
Neurophysiology Aims and scope

We investigated the relationship between the power of rowing movements strokes and the rate of the latter in various testing modes and under different conditions of rowing performance; 25 elite sportsmen specialized in rowing on racing shells were involved in the tests. Two series of tests were carried out on rowing simulators of two types; mechanographic parameters (in particular, joint angles) and EMG activity of broad sets of the muscles involved in this type of locomotor activity were simultaneously recorded. Separate tasks included (i) evaluation of the maximum power of rowing movements, (ii) a controlled step-like increase in the power of the latter, (iii) passing a test “distance” with the maximum speed, (iv) performance of the rowing movements with the presence of visual feedback (with visual presentation of the parameters of motor activity on a monitor), and (v) “rowing” with variations of the external loading. It was found that increases in the power of rowing motions rather rigidly correlated with a nearly proportional increase in the rate of rowing cycles (at all performance modes); a subjectively comfortable rate of such cyclic movements increased with increase in the external loading. Under conditions where rowing movements were initiated with the presence of visual feedback that provided the subject with information on the characteristics of these movements, tested subjects were capable of controlling the power and rate of rowing movements separately. The intensities of EMG discharges of the muscles involved in realization of separate rowing movements correlated mostly with the velocity of these movements and not with the power of the latter. Thus, a strong interrelation between the power and rate of the movements in rowing is, to a great extent, a universal phenomenon; it can be disturbed only at the additional involvement of some external conditions. The value of this interrelation significantly varies between individuals and can be used for characterization of the functional productivity of the athletes and of their functional state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. J. Hofmijster, E. H. J. Landman, R. M. Smith, et al., “Effect of stroke rate on the distribution of net mechanical power in rowing,” J. Sports Sci., 25, No. 4, 403–411 (2007).

    Article  PubMed  Google Scholar 

  2. P. E. Di Prampero, G. Cortelli, F. Celentano, and P. Cerretelli, “Physiological aspects of rowing,” J. Appl. Physiol., 31, 853–857 (1971).

    PubMed  Google Scholar 

  3. V. Kleshnev, “Comparison of on-water rowing with its simulation on concept 2 and row perfect machines,” in: International Symposium on Biomechanics in Sports (Beijing, China, August 22–27, 2005), pp. 130–133.

  4. R. R. Steer, H. A. McGregor, and A. M. Bull, “A comparison of kinematics and performance measures of two rowing ergometers,” J. Sports Sci. Med., 5, 52–59 (2006).

    PubMed  PubMed Central  Google Scholar 

  5. M. J. Hofmijster, A. J. Van Soest, and J. J. De Koning, “Gross efficiency during rowing is not affected by stroke rate,” Med. Sci. Sports Exerc., 41, No. 5, 1088–1095 (2009).

    Article  PubMed  Google Scholar 

  6. T. Cerne, R. Kamnik, B. Vesnicer, et al., “Differences between elite, unior and non-rowers in kinematic and kinetic parameters during ergometer rowing,” Hum. Mov. Sci., 32, 691–707 (2013).

    Article  PubMed  Google Scholar 

  7. A. Guével, S. Boyas, V. Guihard, et al., “Thigh muscle activities in elite rowers during on-water rowing, ”J. Sports Med. ; 32, 109–116 (2011).

  8. N. H. Secher and O. Vaage., “Rowing performance, a mathematical model based on analysis of body dimensions as exemplified by body weight,” Eur. J. Appl. Physiol., 52, 88–93 (1983).

    Article  CAS  Google Scholar 

  9. F. Colloud, P. Bahuaud, N. Doriot, et al., “Fixed versus free floating stretcher mechanism in rowing ergometers: mechanical aspects,” J. Sports Sci., 24, 479–493 (2006).

    Article  CAS  PubMed  Google Scholar 

  10. D. J. Macfarlane, I. M. Edmond, and A. Walmsley, “Instrumentation of an ergometer to monitor the reliability of rowing performance,” J. Sports Sci., 15, 167–173 (1997).

    Article  CAS  PubMed  Google Scholar 

  11. C. Soper and P. A. Hume, “Towards an ideal rowing technique for performance: the contributions from biomechanics,” Sports Med., 34, 825–848 (2004).

    Article  PubMed  Google Scholar 

  12. S. Parkin, A. V. Nowicky, O. M. Rutherford, and A. H. McGregor., “Do oarsmen have asymmetries in the strength of their back and leg muscles?” J. Sports Sci., 19, 521–526 (2001).

    Article  CAS  PubMed  Google Scholar 

  13. T. Tomiak, T. I. Abramovych, A. V. Gorkovenko, et al., “The averaged EMGs recorded from the arm muscles in bimanual “rowing” movements,” Front. Physiol. Doi. 10, 3389/fphys. 2015. 00349 (2015).

  14. T. I. Abramovich, I. V. Vereshchaka, A. N. Tal’nov, et al., “Coordination of activity of the shoulder belt and shoulder muscles in humans during bimanual synchronous two-joint movements,” Neurophysiology, 47, No. 4, 310–321 (2015).

    Article  CAS  Google Scholar 

  15. A. N. Tal’nov, T. Tomiak, A. V Maznychenko, et al., “Firing patterns of human biceps brachii motor units during isotorque ramp-and-hold movements in the elbow joint, ” Neurophysiology, 46, No. 3, 212–220 (2014).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Tal’nov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tomiak, T., Gorkovenko, A.V., Mishchenko, V.S. et al. Control of the Power of Strokes and Muscle Activities in Cyclic Rowing Movements (a Research using Rowing Simulators). Neurophysiology 48, 297–311 (2016). https://doi.org/10.1007/s11062-016-9602-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11062-016-9602-x

Keywords

Navigation