Posttraumatic Stress Disorder (PTSD): Mechanisms and Possible Treatments

Posttraumatic stress disorder (PTSD) is a debilitating mental condition occurring after a tragedy or a traumatic experience, such as rape, assault, natural disasters, war, car or plane accidents, etc. PSTD can cause a number of symptoms, such as fear, high anxiety, hyperarousal, bad dreams, nightmares, etc., existing for a long time after the traumatic event. In recent years, the spread of PTSD has increased in the world, especially in Asia (Middle East), particularly among soldiers who have taken part in military conflicts. This situation confirms the importance of understanding how PTSD develops and of improving its treatment. This paper is a review of the literature related to the respective topics. Like other anxiety disorders, PTSD is related to disruption of the endocrine system, particularly disintegration of the hypothalamus-pituitary-adrenal axis (HPAA). People suffering from PTSD are characterized by elevated levels of corticotropin-releasing hormone, low basal cortisol levels, and enhanced negative feedback suppression of the HPAA. At the present time, certain plant-derived compounds are considered to be a new important source to treat PTSD. For example, remedies obtained from saffron are such possible means. According to our findings, saffron components may considerably affect some parts of the HPAA for reduction of stress-induced corticosterone release.

This is a preview of subscription content, access via your institution.


  1. 1.

    D. G. Kilpatrick, C. Edmunds, and A. Seymour, Rape in America: A Report to the Nation. National Victim Center and the Crime Victims Research and Treatment Center, Medical University of South Carolina, Charleston (1992).

  2. 2.

    P. B. John, S. Russell, and P. S. Russell, “The prevalence of posttraumatic stress disorder among children and adolescents affected by tsunami disaster in Tamil Nadu,” Disaster Manag. Response., 5, No. 1, 3–7 (2007).

    Article  PubMed  Google Scholar 

  3. 3.

    M. H. Swartz, Textbook of Physical Diagnosis: History and Examination, Saunders Elsevier (2006).

  4. 4.

    4. G. C. Gray, K. S. Kaiser, A. W. Hawksworth, et al., “Increased postwar symptoms and psychological morbidity among U.S. Navy Gulf War veterans,”Am. J. Trop. Med. Hyg., 60, No. 5, 758-766 (1999).

  5. 5.

    T. M. Keane, A. D. Marshall, and C. T. Taft, “Posttraumatic stress disorder: Etiology, epidemiology, and treatment outcome,” Annu. Rev. Clin. Psychol., 2, 161-197 (2006).

    Article  PubMed  Google Scholar 

  6. 6.

    R. C. Kessler, A. Sonnega, E. Bromet, et al., “Posttraumatic stress disorder in the National Comorbidity Survey,” Arch. Gen. Psychiatr., 52, No. 12, 1048-1060 (1995).

    CAS  Article  PubMed  Google Scholar 

  7. 7.

    A. Bahreinian and H. Borhani, “Mental health in group of war veterans and their spouses in Qom,” Quart. J. School Med., 27, No. 4, 305–312 (2003).

    Google Scholar 

  8. 8.

    M. Mendenhall, Chaplains in Mental Health: Healing the Spiritual Wounds of War (Cover Story), Am. Psychotherapy Assoc., Springfield (2010).

  9. 9.

    9. K. C. Koenen, S. D Stellman, J. F Sommer, Jr., and J. M. Stellman, “Persisting posttraumatic stress disorder symptoms and their relationship to functioning in Vietnam veterans: A 14 year follow-up,” J. Trauma Stress, 21, No. 1, 49–57 (2008).

  10. 10.

    G. Meftahi, Z. Ghotbedin, M. J. Eslamizade, et al., “Suppressive effects of resveratrol treatment on the intrinsic evoked excitability of CA1 pyramidal neurons,” Cell J. (Yakhteh), 17, No. 3, (2015).

  11. 11.

    M. Olff, Y. Güzelcan, G. J. de Vries, et al., “HPA- and HPT-axis alterations in chronic posttraumatic stress disorder,” Psychoneuroendocrinology, 31, No. 10, 1220–1230 (2006).

  12. 12.

    R. Yehuda, “Advances in understanding neuroendocrine alterations in PTSD and their therapeutic implications,” Ann. N.Y. Acad. Sci, 1071, 137–156 (2006).

  13. 13.

    D. Simeon, M. Knutelska, R. Yehuda, et al., “Hypothalamic-pituitary-adrenal axis function in dissociative disorders, post-traumatic stress disorder, and healthy volunteers,” Biol. Psychiatry, 61, No. 8, 966–973 (2007).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  14. 14.

    M. A. Oquendo, G. Echavarria, H. C. Galfalvy, et al., “Lower cortisol levels in depressed patients with comorbid posttraumatic stress disorder,” Neuropsychopharmacology, 28, No. 3, 591–598 (2003).

  15. 15.

    C. S. de Kloet, E. Vermetten, E. Geuze, et al., “Elevated plasma corticotrophin-releasing hormone levels in veterans with posttraumatic stress disorder,” Prog. Brain Res., 167, 281–291 (2007).

    Article  Google Scholar 

  16. 16.

    V. M. Voloshin, PTSD, Phenomenology, Clinical Aspects Systematics, Dynamics, and Contemporary Approaches to Psychopharmacotherapy [in Russian], Anakharsis, Moscow (2005).

  17. 17.

    C. S. de Kloet, E. Vermetten, C. J. Heijnen, et al., “Enhanced cortisol suppression in response to dexamethasone administration in traumatized veterans with and without posttraumatic stress disorder,” Psychoneuroendocrinology, 32, No. 3, 215–226 (2007).

  18. 18.

    A. J. Douglas, N. H. Steckler, and N. H. Kalin, Vasopressin and Oxytocin, Handbook of Stress and the Brain, The Neurobiology of Stress, Elsevier, Amsterdam, 205–230 (2005).

  19. 19.

    M. V. Ugryumov, Mechanisms of Neuroendocrine Regulation [in Russian], Nauka, Moscow (1999).

  20. 20.

    P. Ouimette, D. Coolhart, D. Sugarman, et al., “A pilot study of posttraumatic stress and associated functioning of Army National Guard following exposure to Iraq warzone trauma,” Traumatology, 14, No. 3, 51–56 (2008).

  21. 21.

    I. M. Engelhard, M. A. van den Hout, J. Weerts, et al., “Deployment-related stress and trauma in Dutch soldiers returning from Iraq. Prospective study,” Br. J. Psychiatr., 191, 140–145 (2007).

    Article  Google Scholar 

  22. 22.

    D. J. Newport and C. B. Nemeroff, “Neurobiology of posttraumatic stress disorder,” Curr. Opin. Neurobiol., 10, No. 2, 211–218 (2000).

    CAS  Article  PubMed  Google Scholar 

  23. 23.

    D. L. Schacter, D. T. Gilbert, D. M. Wegner, et al., Introducing Psychology, Worth Publishers, New York (2011).

    Google Scholar 

  24. 24.

    M. J. Eslamizadeh, F. Saffarzadeh, S. M. Mousavi, et al., “Alterations in CA1 pyramidal neuronal intrinsic excitability mediated by Ih channel currents in a rat model of amyloid beta pathology,” Neuroscience, 305, 279–292 (2015).

    Article  Google Scholar 

  25. 25.

    K. Skelton, K. J. Ressler, S. D. Norrholm, et al., “PTSD and gene variants: New pathways and new thinking,” Neuropharmacology, 62, No. 2, 628–637 (2012).

  26. 26.

    J. Zohar, A. Juven-Wetzler, V. Myers, and L. Fostick, “Post-traumatic stress disorder: Facts and fiction,” Curr. Opin. Psychiatr., 21, No. 1, 74–77 (2008).

    Article  Google Scholar 

  27. 27.

    R. Yehuda, S. L. Halligan, J. A. Golier, et al., “Effects of trauma exposure on the cortisol response to dexamethasone administration in PTSD and major depressive disorder,” Psychoneuroendocrinology, 29 (3), 389–404 (2004).

    CAS  Article  PubMed  Google Scholar 

  28. 28.

    E. B. De Souza, D. E. Grigoriadis, “Corticotropinreleasing factor: physiology, pharmacology, and role in central nervous system and immune disorders”, Amer. Coll. Neuropsychopharmacol., Chap. 7, 91–107 (2002).

  29. 29.

    V. G. Shalyapina, “Corticoliberin in the regulation of adaptive behavior in the pathogenesis of post-stress depression,” in: Basic Neuroendocrinology [in Russian], ÉLBI, St. Petersburg, 84–146 (2005).

  30. 30.

    C. S. de Kloet, E. Vermetten, E. Geuze, et al., “Assessment of HPA-axis function in posttraumatic stress disorder: Pharmacological and non-pharmacological challenge tests, a review,” J. Psychiatr. Res., 40, No. 6, 550–567 (2006).

    Article  PubMed  Google Scholar 

  31. 31.

    F. M. Dautzenberg, S. Braun, and R. L. Hauger, “GRK3 mediates desensitization of CRF1 receptors: a potential mechanism regulating stress adaptation,” Am. J. Physiol. Regul. Integr. Comp. Physiol., 280, No. 4, 935–946 (2001).

    Google Scholar 

  32. 32.

    M. Salehi, H. Eimani, H. Sahraei, and G. H. Meftahi, “Stress can change reward system function in secondgeneration (F2): a review,” Adv. Biores., 6, No. 5, 4–14 (2015).

    Google Scholar 

  33. 33.

    J. C. Shipherd, A. E. Street, P. A. Resick, “Cognitive therapy for posttraumatic stress disorder,” in: Cognitive-Behavioral Therapies for Trauma (2nd ed.), Guilford Press, New York, 96–116 (2006).

  34. 34.

    J. Bisson and M. Andrew, “Psychological treatment of post-traumatic stress disorder (PTSD),” Cochrane Database Syst. Rev., 18, No. 3 (2007).

  35. 35.

    M. Ghodrat, H. Sahraei, J. Razjouyan, and G. H. Meftahi, “Effects of a saffron alcoholic extract on visual short-term memory in humans: a psychophysical study,” Neurophysiology, 46, No. 3, 247–253 (2014).

  36. 36.

    S. K. Verma and A. Bordia, “Antioxidant property of Saffron in man,” Indian J. Med. Sci., 52, No. 5, 205–207 (1998).

    CAS  PubMed  Google Scholar 

  37. 37.

    H. Yaribeygi, H. Sahraei, A. R. Mohammadi, and G. H. Meftahi, “Saffron (Crocus sativus L.) and morphine dependence: A systematic review article,” Am. J. Biol. Life Sci., 2, No. 2, 41–45 (2014).

  38. 38.

    H. Sahraei, J. Shams, S. Marjani, et al., “Effects of the Crocus sativus L. Extract on the acquisition and expression of morphine-induced behavioral sensitization in female mice,” J. Med. Plants, 6, No. 21, 26-35 (2007).

    Google Scholar 

  39. 39.

    S. Soeda, T. Ochiai, L. Paopong, et al., “Crocin suppresses tumor necrosis factor-α-induced cell death of neuronally differentiated PC-12 cells,” Life Sci., 69, No. 24, 2887–2898 (2001).

    CAS  Article  PubMed  Google Scholar 

  40. 40.

    H. Sahraei, Z. Fatahi, A. H. Rohani, et al., “Ethanolic extract of saffron and its constituent crocin diminish stress-induced metabolic signs and alterations of dopamine-related behaviours in rats,” Int. Res. J. Pharm. Pharmacol., 2, No. 7, 165–173 (2012).

    Google Scholar 

  41. 41.

    H. Sahraei, Z. Fatahi, A. Eidi, et al., “Inhibiting post traumatic stress disorder (PTSD) induced by electric shock using ethanol extract of saffron in rats,” J. Biol. Res. Thessalon, 18, 320–327 (2012).

    Google Scholar 

  42. 42.

    K. Abe and H. Saito, “Effects of saffron extract and its constituent crocin on learning behavior and longterm potentiation,” Phytother. Res., 14, No. 3, 149–152 (2000).

    CAS  Article  PubMed  Google Scholar 

  43. 43.

    G. H. Meftahi, M. Janahmadi, and M. J. Eslamizade, “Effects of resveratrol on intrinsic neuronal properties of CA1 pyramidal neurons in rat hippocampal slices,” Physiol. Pharmacol., 18, No. 2, 144–155 (2014).

    Google Scholar 

  44. 44.

    B. A. Halataei, M. Khosravi, S. Arbabian , et al., “Saffron (Crocus sativus) aqueous extract and its constituent crocin reduces stress-induced anorexia in mice.” Phytother. Res., 25, No. 12, 1833–1838 (2011).

    CAS  Article  PubMed  Google Scholar 

  45. 45.

    D. B. Miller and J. P. O’Callaghan, “Neuroendocrine aspects of the response to stress,” Metabolism, 51, 6 Suppl., 5–10 (2002).

  46. 46.

    T. C. Adam and E. S. Epel, “Stress, eating and the reward system,” Physiol. Behav., 91, No. 4, 449–458 (2007).

    CAS  Article  PubMed  Google Scholar 

  47. 47.

    M. Erfani, H. Sahraei, and G. H. Meftahi, “Study of the effects of maternal psychological and physical stress on morphine-induced tolerance in F2 NMRI generation mice,” Adv. Biores., 6, No. 6, 134-140 (2015).

  48. 48.

    D. Chalabi-Yani, H. Sahraei, G. H. Meftahi, et al, “Effect of transient inactivation of ventral tegmental area on the expression and acquisition of nicotine-induced conditioned place preference in rats,” Iran. Biomed. J., 19, No. 4, 214–219 (2015).

    PubMed  PubMed Central  Google Scholar 

  49. 49.

    S. B. Hosseini, H. Sahraei, A. Mohammadi, et al., “Inactivation of the nucl. accumbens core exerts no effect on nicotine-induced conditioned place preference,” Neurophysiology, 47, No. 4, 295–301 (2015).

    CAS  Article  Google Scholar 

  50. 50.

    M. C. Moffett, J. Harley, D. Francis, et al., “Maternal separation and handling affects cocaine selfadministration in both the treated pups as adults and the dams,” J. Pharmacol. Exp. Ther., 317, No. 3, 1210–1218 (2003).

    Article  Google Scholar 

  51. 51.

    A. McFarlane, C. R. Clark, R. A. Bryant, et al., “The impact of early life stress on psychophysiological, personality and behavior measures in 740 non-clinic subjects,” J. Integr. Neurosci., 4, No. 1, 27–40 (2005).

    Article  PubMed  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to G. P. Jahromi.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Asalgoo, S., Jahromi, G.P., Meftahi, G.H. et al. Posttraumatic Stress Disorder (PTSD): Mechanisms and Possible Treatments. Neurophysiology 47, 482–489 (2015).

Download citation


  • posttraumatic stress disorder (PTSD)
  • hypothalamo-pituitary (hypophyseal)-adrenal axis (HPAA)
  • corticosteroids
  • corticotropin-releasing hormone