Skip to main content
Log in

Evaluation of Neonatal Brain Development Using Acoustic Radiation Force Impulse Imaging (ARFI)

  • Published:
Neurophysiology Aims and scope

We applied acoustic radiation force impulse imaging (ARFI) for examination of the brains of 41 neonatal infants of different gestational ages. We used a new technical index, Virtual Touch tissue quantification (VTQ), to evaluate elastic properties of the brain tissues. Different brain tissues demonstrated different values of this index. The greater the gestational age, the higher the VTQ value. We conclude that ARFI provides a new quantitative index to evaluate the level of neonatal brain development and increases the objectivity and reliability of clinical analysis. The method is noninvasive, safe, simple, convenient, and can be extensively applied in clinics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Salmaso, S. Tomasi, and F. M. Vaccarino, “Neurogenesis and maturation in neonatal brain injury,” Clin. Perinatol., 41, 229-239 (2014).

    Article  PubMed Central  PubMed  Google Scholar 

  2. S. H. Kwon, L. Vasung, L. R. Ment, and P. S. Huppi, “The role of neuroimaging in predicting neurodevelopmental outcomes of preterm neonates,” Clin. Perinatol., 41, 257-283 (2014).

    Article  PubMed  Google Scholar 

  3. J. A. Dipietro, K. T. Kivlighan, K. A. Costigan, et al., “Prenatal antecedents of newborn neurological maturation,” Child Dev., 81, 115-130 (2010).

    Article  PubMed Central  PubMed  Google Scholar 

  4. M. Eldib, A. N. Massaro, D. Bulas, and H. Aly, “Neuroimaging and neurodevelopmental outcome of premature infants,” Am. J. Perinatol., 27, 803-818 (2010).

    Article  Google Scholar 

  5. L. M. Leijser, N. Vos, F. J. Walther, and G.van Wezel-Meijler, “Brain ultrasound findings in neonates treated with intrauterine transfusion for fetal anaemia,” Early Human Dev., 88, 717-724 (2012).

    Article  Google Scholar 

  6. R. K. Pooh, “Neurosonoembryology by threedimensional ultrasound,” Semin. Fetal Neonat. Med., 17, 261-268 (2012).

    Article  Google Scholar 

  7. A. H. Whitaker, J. F. Feldman, J. M. Lorenz, et al., “Neonatal head ultrasound abnormalities in preterm infants and adolescent psychiatric disorders,” Arch. Gen. Psychiat., 68, 742-752 (2011).

    Article  PubMed  Google Scholar 

  8. L. Catte, B. Keersmaeker, and F. Claus, “Prenatal neurologic anomalies: sonographic diagnosis and treatment,” Paediatr. Drugs, 14, 143-155 (2012).

    Article  PubMed  Google Scholar 

  9. W. M. Gerdavan, J. S. Sylke, and M. L. Lara, “Cranial ultrasonography in neonates: Role and limitations,” Seminars Perinatol., 34, 28-38 (2010).

    Article  Google Scholar 

  10. F. P. Nelly, E. Goya, J. Tomas, et al., “Quantitative tissue echogenicity of the neonatal brain assessed by ultrasound imaging,” Ultrasound Med. Biol., 35, 1421-1426 (2009).

    Article  Google Scholar 

  11. Y. J. Su, L. F. Du, Y. Wu, et al., “Evaluation of cervical cancer detection with acoustic radiation force impulse ultrasound imaging,” Exp. Ther. Med., 5, 1715-1719 (2013).

    PubMed Central  PubMed  Google Scholar 

  12. G. Cui, Z. Yang, W. Zhang, et al., “Evaluation of acoustic radiation force impulse imaging for the clinicopathological typing of renal fibrosis,” Exp. Ther. Med., 7, 233-235 (2014).

    PubMed Central  PubMed  Google Scholar 

  13. X. J. Hou, A. X. Sun, X. L. Zhou, et al., “The application of Virtual Touch tissue quantification (VTQ) in diagnosis of thyroid lesions: a preliminary study,” Eur. J. Radiol., 82, 797-801 (2013).

    Article  PubMed  Google Scholar 

  14. M. A. Mateen, K. A. Muheet, R. J. Mohan, et al., “Evaluation of ultrasound based acoustic radiation force impulse (ARFI) and eSie touch sonoelastography for diagnosis of inflammatory pancreatic diseases,” JOP, 13, 36-44 (2012).

    PubMed  Google Scholar 

  15. W. Meng, G. Zhang, C. Wu, et al., “Preliminary results of acoustic radiation force impulse (ARFI) ultrasound imaging of breast lesions,” Ultrasound Med. Biol., 37, 1436-1443 (2011).

    Article  PubMed  Google Scholar 

  16. M. T. Shuang, Z. Ping, Q. Ying, et al., “Usefulness of acoustic radiation force impulse imaging in the differential diagnosis of benign and malignant liver lesions,” Acad. Radiol., 18, 810-815 (2011).

    Article  Google Scholar 

  17. J. R. Doherty, J. J. Dahl, and G. E. Trahey, “Harmonic tracking of acoustic radiation force-induced displacements,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 60, 2347-2358 (2013).

    Article  PubMed Central  PubMed  Google Scholar 

  18. J. Zhan, X. H. Diao, Q. L. Chai, and Y. Chen, “Comparative study of acoustic radiation force impulse imaging with real-time elastography in differential diagnosis of thyroid nodules,” Ultrasound Med. Biol., 39, 2217-2225 (2013).

    Article  PubMed  Google Scholar 

  19. I. Sporea, O. H. Gilja, S. Bota, et al., “Liver elastography – an update,” Med. Ultrason, 15, 304-314 (2013).

    Article  PubMed  Google Scholar 

  20. S. Wojcinski, K. Brandhorst, G. Sadigh, et al., “Acoustic radiation force impulse imaging with Virtual Touch™ tissue quantification: mean shear wave velocity of malignant and benign breast masses,” Int. J. Womens Health, 30, 619-627 (2013).

    Article  Google Scholar 

  21. M. Sugitani, Y. Fujita, Y. Yumoto, et al., “A new method for measurement of placental elasticity: acoustic radiation force impulse imaging,” Placenta, 34, 1009-1013 (2013).

    Article  CAS  PubMed  Google Scholar 

  22. O. Kenichi, M. Susumu, K. D. Pamela, et al., “Multicontrast human neonatal brain atlas: Application to normal neonate development analysis,” NeuroImage, 56, 8-20 (2011).

    Article  Google Scholar 

  23. C. M. Herba, S. J. Roza, P. Govaert, et al., “Infant brain development and vulnerability to later internalizing difficulties: the generation R study,” J. Am. Acad. Child Adolesc. Psychiat., 49, 1053-1063 (2010).

    Article  Google Scholar 

  24. S. J. Steggerda, F. T. de Bruïne, V. E. Smits-Wintjens, et al., “Ultrasound detection of posterior fossa abnormalities in full-term neonates,” Early Human Dev., 88, 233-239 (2012).

    Article  Google Scholar 

  25. B. Helen, P. Chryssoula, N. Ioannis, et al., “Comparison of findings on cranial ultrasound and magnetic resonance imaging before discharge in preterm infants. Correlation with the neurological examination,” Early Human Dev., 86, S29 (2010).

    Google Scholar 

  26. B. Gross, D. Garcia-Tapia, E. Riedesel, et al., “Normal canine brain maturation at magnetic resonance imaging,” Vet. Radiol. Ultrasound, 51, 361-373 (2010).

    Article  PubMed Central  PubMed  Google Scholar 

  27. N. Tusor, T. Arichi, S. J. Counsell, and A. D. Edwards, “Brain development in preterm infants assessed using advanced MRI techniques,” Clin. Perinatol., 41, 25-45 (2014).

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. F. Du.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Su, Y., Ma, J., Du, L.F. et al. Evaluation of Neonatal Brain Development Using Acoustic Radiation Force Impulse Imaging (ARFI). Neurophysiology 47, 322–325 (2015). https://doi.org/10.1007/s11062-015-9539-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11062-015-9539-5

Keywords

Navigation