Skip to main content

Effects of an Extract of Salvia Miltiorrhiza on a Penicillin-Induced Epilepsy Model in Rats

In a penciling-induced epilepsy model, Wistar rats (16 males, 16 females) were i.p. administered with an extract of Salvia miltiorrhiza (SmE; total dose 50 mg/kg) once a day for 15 days. The rats were divided into four equal groups, control and SmE-treated for each sex. After the treatment period, an epilepsy model was produced by penicillin G injection (500 IU) into the motor cortex; the electrocorticogram (EcoG) was recorded for 120 min, and statistical analysis was performed. In the male control group with penicillin-induced epilepsy, the spike frequency was significantly (P < 0.05) higher than that in the female control group. The frequency values have been significantly (P < 0.01) increased within the observation period in the female SmE-treated group, while the respective values significantly (P < 0.05) decreased in the analogous male group. There were insignificant differences in the amplitude values and latency to onset of the spike/wave events between female/male SmE and female/male control groups (P > 0.05). Thus, the SmE exerts anticonvulsant effects in the male rat group, while its effect should be characterized as proconvulsant in the female group in the penicillin-induced epilepsy model. The difference (related to the presence of estrogen analogs in the SmE) is determined by dissimilar hormonal backgrounds in males and females. The SmE may be considered as the base for development of anticonvulsant drugs for clinical therapy of epilepsy in the future.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    J. W. Sander and S. D. Shorvon, “Incidence and prevalence studies in epilepsy and their methodological problems: a review,” J. Neurol. Neurosurg. Psychiat., 50, No. 7, 829–839 (1987).

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  2. 2.

    A. K. Ngugi, S. M. Kariuki, C. Bottomley, et al., “Incidence of epilepsy. A systemic review and meta analysis,” Neurology, 77, No. 10, 1005–1012 (2011).

    PubMed Central  Article  PubMed  Google Scholar 

  3. 3.

    D. M. Treiman, “GABAergic mechanisms in epilepsy,” Epilepsia, 42, Suppl. 3, 8–12 (2001).

  4. 4.

    M. Tan and U. Tan, “Sex difference in susceptibility to epileptic seizures in rats: importance of estrous cycle,” Int. J. Neurosci., 108, Nos. 3/4, 175–191 (2001).

    CAS  Article  PubMed  Google Scholar 

  5. 5.

    A. E. Medina, A. C. Manhães, and S. L. Schmidt, “Sex differences in sensitivity to seizures elicited by pentylenetetrazol in mice,” Pharmacol. Biochem. Behav., 68, No. 3, 591–596 (2001).

    CAS  Article  PubMed  Google Scholar 

  6. 6.

    M. Tan, N. I. Kalyoncu, and U. Tan, “Sex difference in susceptibility to picrotoxin-induced seizures in rats following octreotide,” Int. J. Neurosci., 112, No. 8, 903-911(2002).

    Article  PubMed  Google Scholar 

  7. 7.

    S. Peternal, K. Pilipovic, and G. Zupan, “Seizure susceptibility and the brain regional sensitivity to oxidative stress in male and female rats in the lithiumpilocarpine model of temporal lobe epilepsy,” Prog. Neuropsychopharmacol. Biol. Psychiat., 33, No. 3, 456–462 (2009).

    Article  Google Scholar 

  8. 8.

    R. S. Fisher, “Animal model of the epilepsies,” Brain Res. Rev., 14, No. 3, 245–278 (1989).

    CAS  Article  PubMed  Google Scholar 

  9. 9.

    D. Contrera, “Experimental models in epilepsy,” Rev. Neurol., 30, No. 4, 370–376 (2000).

    Google Scholar 

  10. 10.

    M. Ayyildiz, M. Yildirim, E. Agar, and A. K. Baltaci, “The effects of leptin on penicillin induced epileptiform activity in the rats,” Brain Res. Bull., 68, No. 5, 374–378 (2006).

    CAS  Article  PubMed  Google Scholar 

  11. 11.

    F. M. Gokce, F. Bagirici, S. Demir, et al., “The effect of neuronal nitric oxide synthase inhibitor 7- nitroindazole on the cell death induced by zinc administration in the brain of rats,” Turk. J. Med. Sci., 39, No. 2, 197–202 (2009).

    CAS  Google Scholar 

  12. 12.

    M. E. Garcia Garcia, I. Garcia Morales, and J. Matías Guiu, “Experimental models in epilepsy,” Neurologia, 25, No. 3, 181–188 (2010).

    CAS  Article  PubMed  Google Scholar 

  13. 13.

    M. Yildirim, M. Ayyildiz, and E. Agar, “Endothelial nitric oxide synthase activity is involved in the protective effect of ascorbic acid against penicillininduced epileptiform activity,” Seizure, 19, No. 2, 102–108 (2010).

    Article  PubMed  Google Scholar 

  14. 14.

    G. Wake, J. Court, A. Pickering, et al., “CNS acetylcholine receptor activity in European medicinal plants traditionally used to improve failing memory,” J. Ethnopharmacol., 69, No. 2, 105–114 (2000).

    CAS  Article  PubMed  Google Scholar 

  15. 15.

    S. Savelev, E. Okello, N. S. L. Perry, et al., “Synergistic and antogonistic interactions of anticholinesterase terpenoids in Salvia lavandulaefolia essential oil,” Biochem. Pharmacal. Behav., 75, No. 3, 661–668 (2003).

    CAS  Article  Google Scholar 

  16. 16.

    S. E. Kintsizos, Sage. The Genus Salvia, Harward Acad. Publ., Taylor & Francis e-Library (2005), pp. 206–216.

  17. 17.

    D. Baricevic and T. Bartol, “The biological/pharmacological activity of the Salvia genus,” in: SAGE––The Genus Salvia, S. E. Kintzios (ed.), Harvard Acad. Publ., Amsterdam (2000), pp. 143–184.

    Google Scholar 

  18. 18.

    M. E. Cuvelier, C. Berset, and H. Richard, “Antioxidant constituents in sage (Salvia officinalis),” J. Agric. Food Chem., 42, No. 3, 665–669 (1994).

    CAS  Article  Google Scholar 

  19. 19.

    M. Wang, J. Li, M. Rangarajan, et al., “Antioxidative phenolic compounds from sage (Salvia offcinalis),” J. Agric. Food Chem., 46, No. 12, 4869–4873 (1998).

    CAS  Article  Google Scholar 

  20. 20.

    J. Hohmann, I. Zupko, D. Redei, et al., “Protective effects of the aerial parts of Salvia officinalis, Melissa officinalis and Lavandula angustifolia and their constituents against enzyme-dependent and enzymeindependent lipid peroxidation,” Planta Med., 65, No. 6, 576–578 (1999).

    CAS  Article  PubMed  Google Scholar 

  21. 21.

    Y. R. Lu and L.Y Foo, “Salvianolic acid, a potent phenolic antioxidant from Salvia officinalis,” Tetrahedron Lett., 42, No. 46, 8223–8225 (2001).

    CAS  Article  Google Scholar 

  22. 22.

    I. Zupko, J. Hohmann, D. Redei, et al., “Antioxidant activity of leaves of Salvia species in enzyme dependent and enzyme-independent systems of lipid peroxidation and their phenolic constituents,” Planta Med., 67, No. 4, 366–368 (2001).

    CAS  Article  PubMed  Google Scholar 

  23. 23.

    A. Sivropoulou, C. Nikolaou, E. Papanikolaou, et al., “Antimicrobial, cytotoxic and antiviral activities of Salvia fructicosa essential oil,” J. Agric. Food. Chem., 45, No. 8, 3197–3201 (2006).

    Article  Google Scholar 

  24. 24.

    P. N. Chang, J. C. Mao, S. H. Huang, et al., “Analysis of cardioprotective effects using purified Salvia miltiorrhiza extract on isolated rat hearts,” J. Pharmacol. Sci., 101, No. 3, 245–249 (2006).

    CAS  Article  PubMed  Google Scholar 

  25. 25.

    J. Velíšková, “Estrogens and epilepsy: why are we so excited,” Neuroscientist, 13, No. 1, 77–88 (2007).

    Article  PubMed  Google Scholar 

  26. 26.

    J. Velíšková and K. A. DeSantis, “Sex and hormonal influences on seizures and epilepsy,” Horm. Behav., 63, No. 2, 267–277 (2013).

    PubMed Central  Article  PubMed  Google Scholar 

  27. 27.

    M. Eidi, A. Eidi, and M. Bahar, “Effects of Salvia officinalis L. (sage) leaves on memory retention and its interaction with the cholinergic system in rats,” Nutrition, 22, No. 3, 321–326 (2006).

    CAS  Article  PubMed  Google Scholar 

  28. 28.

    R. W. Olsen, “The GABA postsynaptic membrane receptor – ionophore complex. Site of action of convulsant and anticonvulsant drugs,” Mol. Cell Biochem., 39, No. 2, 261–279 (1981).

    CAS  Article  PubMed  Google Scholar 

  29. 29.

    D. Pericic, H. Manev, and J. Geber, “Sex related differences in the response of mice, rats and cats to administration of picrotoxin,” Life Sci., 38, No. 10, 905–913 (1986).

    CAS  Article  PubMed  Google Scholar 

  30. 30.

    R. L. Macdonald and R. W. Olsen, “GABA receptor channels,” Annu. Rev. Neurosci., 17, No. 1, 569–602 (1994).

    CAS  Article  PubMed  Google Scholar 

  31. 31.

    T. Backstrom, K. W. Gee, N. Lan, et al., “Steroids in relation to epilepsy and anaesthesia,” in: Steroids and Neuronal Activity. CIBA Foundation Symposium, D. Chadwick and K. Widdows (eds.), vol. 153. London, Wiley (1990), pp. 225–229.

  32. 32.

    J. Christensen, M. J. Kjeldsen, H. Andersen, et al., “Gender differences in epilepsy,” Epilepsia, 46, No. 6, 956–960 (2005).

    Article  PubMed  Google Scholar 

  33. 33.

    F. Nicoletti, C. Speciale, M. A. Sortino, et al., “Comparative effects of estradiol benzoate, the antiestrogen clomiphene citrate, and the progestin medroxyprogesterone acetate on kainic acid-induced seizures in male and female rats,” Epilepsia, 26, No. 3, 252–257 (1985).

    CAS  Article  PubMed  Google Scholar 

  34. 34.

    C. A. Mejias Aponte, C. A. Jimenez Rivera, and A. C. Segarra, “Sex differences in models of temporal lobe epilepsy: role of testosterone,” Brain Res., 944, Nos. 1/2, 210–218 (2002).

    CAS  Article  PubMed  Google Scholar 

  35. 35.

    H. E. Scharfman, G. H. Malthankar Phatak, D. Friedman, et al., “A rat model of epilepsy in women: a tool to study physiological interactions between endocrine systems and seizures,” Endocrinology, 150, No. 9, 4437–4442 (2009).

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  36. 36.

    C. L. Harden, B. G. Nikolov, P. Kandula, et al., “Effect of levetiracetam on testosterone levels in male patients,” Epilepsia, 51, No. 11, 2348–2351 (2010).

    CAS  Article  PubMed  Google Scholar 

  37. 37.

    M. J. Morrell, “Hormones and epilepsy through the lifetime,” Epilepsia, 33, No. Suppl. 4, S49-S61 (1992).

    Article  PubMed  Google Scholar 

  38. 38.

    H. E. Scharfman and N. J. Mac Lusky, “The influence of gonadal hormones on neuronal excitability, seizures, and epilepsy in the female,” Epilepsia, 47, No. 9, 1423–1440 (2006).

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  39. 39.

    C. S. Woolley, “Effects of estrogen in the CNS,” Current Opin. Neurobiol., 9, No. 3, 349–354 (1999).

    CAS  Article  Google Scholar 

  40. 40.

    D. S. Reddy and M. A. Rogawski, “Neurosteroid replacement therapy for catamenial epilepsy,” Neurotherapeutics, 6, No. 2, 392–401 (2009).

    PubMed Central  CAS  Article  PubMed  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding authors

Correspondence to A. Bahadir, S. Demir or H. Orallar.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bahadir, A., Demir, S., Orallar, H. et al. Effects of an Extract of Salvia Miltiorrhiza on a Penicillin-Induced Epilepsy Model in Rats. Neurophysiology 47, 218–224 (2015). https://doi.org/10.1007/s11062-015-9524-z

Download citation

Keywords

  • Salvia miltiorrhiza
  • electrocorticography
  • penicillin-induced epileptiform activity
  • rats