Skip to main content
Log in

Effects of Acute Intracerebroventricular Microinfusions of Bupropion on Background Spike Activity of Locus Coeruleus Neurons in Rats

  • Published:
Neurophysiology Aims and scope

Considering that noradrenergic (NAE) neurons of the locus coeruleus (LC) play significant roles in the formation of biological rhythms, pain, addictions, and mood disorders, we tested the effects of acute intracerebroventricular microinfusions of bupropion, an inhibitor of NA reuptake used in clinics as an antidepressant, on background spike activity on LC neurons in chloral hydrate anesthetized rats. Ten microliters of the solutions containing 0.001, 0.01, 0.1, 1.0, or 10.0 μmol bupropion were infused during 3 min; spike activity of single LC neurons identified according to the known characteristics was recorded extracellularly by glass microelectrodes. Microinfusions of 0.01 to 10.0 μmol bupropion suppressed background spiking of the above neurons in a dose-dependent manner. The normalized mean intensities and durations of inhibition were 17.3, 19.4, 26.3, and 41.1% and 1.4, 7.1, 12.4, and 18.3 min, respectively. The smallest dose (0.001 μmol) was ineffective. It is assumed that bupropion increases the NA level in proximity to NAE LC neurons. The actions of bupropion on other cerebral neuromodulatory systems need further examination. Inhibition of LC neuronal activity by bupropion can help to explain some acute, chronic, and side effects of this agent used in clinics for correction of mood disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Szabadi, “Functional neuroanatomy of the central noradrenergic system,” Psychopharmacology, 27, 659–693 (2013).

    Article  CAS  Google Scholar 

  2. J. J. Schildkraut, “The catecholamine hypothesis of affective disorders. A review of supporting evidence,” Int. J. Psychiat., 4, 203–217 (1967).

    CAS  Google Scholar 

  3. W. Potter, G. Grossman, and M. Rudorfer, “Noradrenergic function in depressive disorders,” in: Biology of Depressive Disorders, J. Mann and D. Jupter (eds.), Plenum Press, New York (1993), pp. 1–27.

    Chapter  Google Scholar 

  4. W. Kostowski, “Possible relationship of the locus coeruleus-hippocampal noradrenergic neurons to depression and mode of action of antidepressant drugs,” Pol. J. Pharmacol. Pharm., 37, 727–743 (1985).

    CAS  PubMed  Google Scholar 

  5. P. L. Delgado, “Depression: the case for a monoamine deficiency,” J. Clin. Psychiat., 61, Suppl. 6, 7–11 (2000).

    CAS  Google Scholar 

  6. W. E. Bunney Jr. and J. M. Davis, “Norepinephrine in depressive reactions. A review,” Arch. Gen. Psychiat., 13, 483–494 (1965).

    Article  CAS  PubMed  Google Scholar 

  7. R. M. Hirschfeld, “History and evolution of the monoamine hypothesis of depression,” J. Clin. Psychiat., 61, Suppl. 6, 4–6 (2000).

    CAS  Google Scholar 

  8. G. A. Ordway, K. S. Smith, and J. W. Haycock, “Elevated tyrosine hydroxylase in the locus coeruleus of suicide victims,” J. Neurochem., 62, 680–685 (1994).

    Article  CAS  PubMed  Google Scholar 

  9. V. Chan-Palay and E. Asan, “Quantitation of catecholamine neurons in the locus coeruleus in human brains of normal young and older adults and in depression,” J. Comp. Neurol., 287, 357–372 (1989).

    Article  CAS  PubMed  Google Scholar 

  10. M. M. Grant and J. M. Weiss, “Effects of chronic antidepressant drug administration and electroconvulsive shock on locus coeruleus electrophysiologic activity,” Biol. Psychiat., 49, 117–129 (2001).

    Article  CAS  PubMed  Google Scholar 

  11. C. H. West, J. C. Ritchie, K. A. Boss-Williams, and J. M. Weiss, “Antidepressant drugs with differing pharmacological actions decrease activity of locus coeruleus neurons,” Int. J. Neuropsychopharmacol., 12, 627–641 (2009).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. C. H. West, J. C. Ritchie, and J. M. Weiss, “Addendum: Paroxetine-induced increase in activity of locus coeruleus neurons in adolescent rats: implication of a countertherapeutic effect of an antidepressant,” Neuropsychopharmacology, 35, 1836–1837 (2010).

    Article  PubMed Central  PubMed  Google Scholar 

  13. B. R. Cooper, C. M. Wang, R. F. Cox, et al., “Evidence that the acute behavioral and electrophysiological effects of bupropion (Wellbutrin) are mediated by a noradrenergic mechanism,” Neuropsychopharmacology, 11, 133–141 (1994).

    Article  CAS  PubMed  Google Scholar 

  14. Y. Mateo, J. Pineda, and J. J. Meana, “Somatodendritic alpha2-adrenoceptors in the locus coeruleus are involved in the in vivo modulation of cortical noradrenaline release by the antidepressant desipramine,” J. Neurochem., 71, 790–798 (1998).

    Article  CAS  PubMed  Google Scholar 

  15. S. Amirabadi, F. Ghaderi Pakdel, P. Shahabi, et al., “Microinfusion of bupropion inhibits putative GABAergic neuronal activity of the ventral tegmental area”, Basic Clin. Neurosci., 5, 182190 (2014).

    PubMed Central  PubMed  Google Scholar 

  16. G. Paxinos, and C. Watson, The Rat Brain in Stereotaxic Coordinates, Acad. Press Inc., San Diego (2007).

    Google Scholar 

  17. J. Pineda, L. Ugedo, and J. A. Garcia-Sevilla, “Stimulatory effects of clonidine, cirazoline and rilmenidine on locus coeruleus noradrenergic neurones: possible involvement of imidazoline-preferring receptors,” Naunyn Schmiedebergs Arch. Pharmacol., 348, 134–140 (1993).

    Article  CAS  PubMed  Google Scholar 

  18. G. Aston-Jones and F. E. Bloom, “Norepinephrinecontaining locus coeruleus neurons in behaving rats exhibit pronounced responses to non-noxious environmental stimuli,” J. Neurosci., 1, No. 8, 887–900 (1981).

    CAS  PubMed  Google Scholar 

  19. M. K. Borsody and J. M. Weiss, “Influence of corticotropin-releasing hormone on electrophysiological activity of locus coeruleus neurons,” Brain Res., 724, 49–68 (1996).

    Article  Google Scholar 

  20. S. L. Foote, G. Aston-Jones, and F. E. Bloom, “Impulse activity of locus coeruleus neurons in awake rats and monkeys is a function of sensory stimulation and arousal,” Proc. Natl. Acad. Sci. USA, 77, 3033–3037 (1980).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. J. Korf, B. S. Bunney, and G. K. Aghajanian, “Noradrenergic neurons: morphine inhibition of spontaneous activity,” Eur. J. Pharmacol., 25, 165–169 (1974).

    Article  CAS  PubMed  Google Scholar 

  22. G. K. Aghajanian and C. P. VanderMaelen, “Alpha 2-adrenoceptor-mediated hyperpolarization of locus coeruleus neurons: intracellular studies in vivo,” Science, 215, 1394–1396 (1982).

    Article  CAS  PubMed  Google Scholar 

  23. J. M. Cedarbaum and G. K. Aghajanian, “Noradrenergic neurons of the locus coeruleus: inhibition by epinephrine and activation by the alpha-antagonist piperoxane,” Brain Res., 112, 413–419 (1976).

    Article  CAS  PubMed  Google Scholar 

  24. P. E. Simson and J. M. Weiss, “Alpha-2 receptor blockade increases responsiveness of locus coeruleus neurons to excitatory stimulation,” J. Neurosci., 7, 1732–1740 (1987).

    CAS  PubMed  Google Scholar 

  25. V. M. Pickel, T. H. Joh, and D. J. Reis, “A serotonergic innervation of noradrenergic neurons in nucleus locus coeruleus: demonstration by immunocytochemical localization of the transmitter specific enzymes tyrosine and tryptophan hydroxylase,” Brain Res., 131, 197–214 (1977).

    Article  CAS  PubMed  Google Scholar 

  26. L. Oreland and G. Engberg, “Relation between brain monoamine oxidase (MAO) activity and the firing rate of locus coeruleus neurons,” Naunyn Schmiedebergs Arch. Pharmacol., 333, 235–239 (1986).

    Article  CAS  PubMed  Google Scholar 

  27. P. Blier and C. de Montigny, “Serotonergic but not noradrenergic neurons in rat central nervous system adapt to long-term treatment with monoamine oxidase inhibitors,” Neuroscience, 14, 949–955 (1985).

    Article  Google Scholar 

  28. R. J. Valentino, A. L. Curtis, D. G. Parris, and R. G. Wehby, “Antidepressant actions on brain noradrenergic neurons,” J. Pharmacol. Exp. Ther., 253, 833–840 (1990).

    CAS  PubMed  Google Scholar 

  29. J. J. Scuvee-Moreau and A. E. Dresse, “Effect of various antidepressant drugs on the spontaneous firing rate of locus coeruleus and dorsal raphe neurons in the rat,” Eur. J. Pharmacol., 57, 219–225 (1979).

    Article  CAS  PubMed  Google Scholar 

  30. A. L. Curtis and R. J. Valentino, “Acute and chronic effects of the atypical antidepressant, mianserin, on brain noradrenergic neurons,” Psychopharmacology (Berl), 103, 330–338 (1991).

    Article  CAS  Google Scholar 

  31. R. Mongeau, M. Weiss, C. de Montigny, and P. Blier, “Effect of acute, short- and long-term milnacipran administration on rat locus coeruleus noradrenergic and dorsal raphe serotonergic neurons,”. Neuropharmacology, 37, 905–918 (1998).

    Article  CAS  PubMed  Google Scholar 

  32. G. A. Ordway, J. Schenk, C. A. Stockmeier, et al., “Elevated agonist binding to alpha2-adrenoceptors in the locus coeruleus in major depression,” Biol. Psychiat., 53, 315–323 (2003).

    Article  CAS  PubMed  Google Scholar 

  33. V. Klimek, C. Stockmeier, J. Overholser, et al., “Reduced levels of norepinephrine transporters in the locus coeruleus in major depression,” J. Neurosci., 17, 8451–8458 (1997).

    CAS  PubMed  Google Scholar 

  34. R. M. Ferris and B. R. Cooper, “Mechanism of antidepressant activity of bupropion,” J. Clin. Psychiat., 11, 2–14 (1993).

    Google Scholar 

  35. B. R. Cooper, T. J. Hester, and R. A. Maxwell, “Behavioral and biochemical effects of the antidepressant bupropion (Wellbutrin): evidence for selective blockade of dopamine uptake in vivo,” J. Pharmacol. Exp. Ther., 215, 127–134 (1980).

    CAS  PubMed  Google Scholar 

  36. H. V. Nyback, J. R. Walters, G. K. Aghajanian, and R. H. Roth, “Tricyclic antidepressants: Effects on the firing rate of brain noradrenergic neurons,” Eur. J. Pharmacol., 32, 302–312 (1975).

    Article  CAS  PubMed  Google Scholar 

  37. B. A. McMillen, W. Warnack, D. C. German, and P. A. Shore, “Effects of chronic desipramine treatment on rat brain noradrenergic responses to β-adrenergic drugs,” Eur. J. Pharmacol., 61, 239–246 (1980).

    Article  CAS  PubMed  Google Scholar 

  38. C. Miguelez, L. Grandoso, and L. Ugedo, “Locus coeruleus and dorsal raphe neuron activity and response to acute antidepressant administration in a rat model of Parkinson's disease,” Int. J. Neuropsychopharmacol., 14, 187–200 (2011).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. G. Pakdel.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pakdel, F.G., Amirabadi, S., Naderi, S. et al. Effects of Acute Intracerebroventricular Microinfusions of Bupropion on Background Spike Activity of Locus Coeruleus Neurons in Rats. Neurophysiology 46, 316–322 (2014). https://doi.org/10.1007/s11062-014-9450-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11062-014-9450-5

Keywords

Navigation