Skip to main content

Effect of Prior Instructions on Preprogrammed Reactions of Trunk Muscles in Individuals with and without Chronic Low Back Pain

The late component of the stretch reflex occurring in humans within a 40 to 120 msec interval following a loading perturbation is qualified as a preprogrammed muscle reaction (PPR). The PPR size can be significantly modulated with prior instructions. These modifications are significantly influenced by a number of factors, in particular by the presence of pain syndromes. The objective of our study was to compare the effect of prior instructions on the PPR amplitude in the trunk muscles in individuals with chronic low back pain (LBP) compared to healthy controls. LBP is a widespread syndrome, especially in athletes. Surface EMGs were recorded from superficial trunk muscles, rectus abdominis (RA) and erector spinae (ES), in athletes suffering from chronic LBP (n = 24) and asymptomatic (healthy) athletes (n = 25). Loading perturbations (induced by dropping a weight, application of 3 kg force, ≈ 30 N, to the outstretched hand from a 8 cm height) were introduced in standing at a known time with prior instructions to “let go” for the induced perturbation or to “resist” it. The root mean square (RMS) of the EMG amplitudes within the reaction duration were compared between the two groups. Statistically significant differences were obtained when the mean PPR EMG amplitudes were compared between the LBP and control groups for the above two task instructions; this was found for both examined muscles, RA and ES (P < 0.05). Therefore, individuals with chronic LBP exhibit poorly modulated PPR amplitudes according to prior task instructions. Changes in the networks controlling automatically regulated movements and excitability of the spinal pathways could be responsible for this specificity.

This is a preview of subscription content, access via your institution.

REFERENCES

  1. P. H. Hammond, “Involuntary activity in biceps following the sudden application of velocity to the abducted forearm,” J. Physiol., 127, 23-25 (1995).

    Google Scholar 

  2. P. W. Matthews, “The human reflex and the motor cortex,” Trends Neurosci., 14, 87-91 (1991).

    PubMed  Article  CAS  Google Scholar 

  3. G. C. Phillips, “Motor apparatus of the baboon’s hand,” Proc. Roy. Soc. Lond., Ser. B, Biol. Sci., 173, No. 31, 141-174 (1969).

  4. P. B. C. Matthews, S. F. Farmer, and D. A. Ingram, “On the localization of the stretch reflex of intrinsic hand muscles in a patient with mirror movements,” J. Physiol., 428, 561-577 (1990).

    PubMed Central  PubMed  CAS  Google Scholar 

  5. J. Cholewicki, S. P. Silfies, R. A. Shah, et al., “Delayed trunk muscle reflex responses increase the risk of low back injuries,” Spine, 30, No. 23, 2614-2620 (2005).

    PubMed  Article  Google Scholar 

  6. A. K. Datta, L. M. Harrison, and J. A. Stephens, “Taskdependent changes in the size of response to magnetic brain stimulation in human first dorsal interosseous muscle,” J. Physiol., 418, No. 1, 13-23 (1989).

    PubMed Central  PubMed  CAS  Google Scholar 

  7. V. Dietz, M. Discher, and M. Trippel, “Task-dependent modulation of short-and long-latency electromyographic responses in upper limb muscles,” Electroencephalogr. Clin. Neurophysiol., 93, No. 1, 49-56 (1994).

    PubMed  Article  CAS  Google Scholar 

  8. G. N. Lewis, E. J Perreault, and C. D. MacKinnon, “The influence of perturbation duration and velocity on the long-latency response to stretch in the biceps muscle,” Exp. Brain Res., 163, 361-369 (2005).

    Google Scholar 

  9. J. A. Hides, W. R. Stanton, S. J. Wilson, et al., “Retraining motor control of abdominal muscles among elite cricketers with low back pain,” Scand. J. Med. Sci. Sports, 20, No. 6, 834-842 (2010).

    PubMed  Article  CAS  Google Scholar 

  10. I. L. Kurtzer, J. A. Pruszynski, and S. H. Scott, “Longlatency reflexes of the human arm reflect an internal model of limb dynamics,” Current. Biol., 18, 449-453 (2008).

    Article  CAS  Google Scholar 

  11. E. Todorov and M. I. Jordan, “Optimal feedback control as a theory of motor coordination,” Nat. Neurosci., 5, 1226-1235 (2002).

    Google Scholar 

  12. C. C. Gielen, L. Ramaekers, and E. J. Van Zuylen, “Longlatency stretch reflexes as co-ordinated functional responses in man,” J. Physiol., 407, 275-292 (1988).

    PubMed Central  PubMed  CAS  Google Scholar 

  13. J. G. Colebatch, S. C. Gandevia, D. I. McCloskey, and E. K. Potter, “Subject instruction and long-latency reflex responses to muscle stretch,” J. Physiol., 29, 527-534 (1979).

    Google Scholar 

  14. C. K. Loo and D. I. McCloskey, “Effects of prior instruction and anaesthesia on long-latency responses to stretch in the long flexor of the human thumb,” J. Physiol., 365, No. 1, 285-296 (1985).

    PubMed Central  PubMed  CAS  Google Scholar 

  15. M. L. Latash, “Preprogramed reactions,” in: Neurophysiological Basis of Movement, Human Kinetics Publ., Champaign (2008), pp. 113-218.

  16. J. C. Rothwell, M. M. Traub, and C. D. Marsden, “Influence of voluntary intent on the human longlatency stretch reflex,” Nature, 286, 496-498 (1980).

    PubMed  Article  CAS  Google Scholar 

  17. C. Capaday, R. Forget, and T. Milner, “A re-examination of the effects of instruction on the long-latency stretch reflex response of the flexor pollicis longus muscle,” Exp. Brain Res., 100, No. 3, 515-521 (1994).

    PubMed  Article  CAS  Google Scholar 

  18. T. Dreisinger and B. Nelson, “Management of back pain in athletes,” Sports Med., 21, No. 4, 313-320 (2006).

    Article  Google Scholar 

  19. K. L. Newcomer, T. D. Jacobson, D. A. Gabriel, et al., “Muscle activation patterns in subjects with and without low back pain,” Arch. Phys. Med. Rehabil., 83, 816-821 (2002).

    PubMed  Article  Google Scholar 

  20. M. Ramprasad, D. S. Shenoy, S. J. Singh, et al., “The magnitude of pre-programmed reaction dysfunction in back pain patients: Experimental pilot electromyography study,” J. Back Musculoskelet. Rehabil., 23, 77-86 (2010).

    PubMed  CAS  Google Scholar 

  21. K. P. Granata, K. F. Orishimo, and A. H. Sanford, “Trunk muscle coactivation in preparation for sudden load,” J. Electromyogr. Kinesiol., 11, No. 4, 247-254 (2001).

    PubMed  Article  CAS  Google Scholar 

  22. A. F. Thilmann, M. Schwarz, R. Töpper, et al., “Different mechanisms underlie the long-latency stretch reflex response of active human muscle at different joints,” J. Physiol., 444, No. 1, 631-643 (1991).

    PubMed Central  PubMed  CAS  Google Scholar 

  23. J. R. Cram and E. Criswell, “Static assessment and clinical protocol,” in: Introduction to Surface Electromyography, Jones a Bartlett Publ. (2010), pp 105-113.

  24. J. H. Skotte, N. Fallentin, M. T. Pedersen, et al., “Adaptation to sudden unexpected loading of the low back – the effects of repeated trials,” J. Biomech., 37, 1483-1489 (2004).

    PubMed  Article  CAS  Google Scholar 

  25. M. T. Pedersen, M. B. Randers, J. H. Skotte, and P. Krustrup, “Recreational soccer can improve the reflex response to sudden trunk loading among untrained women,” J. Strength Cond. Res., 23, No. 9, 2621-2626 (2009).

    PubMed  Article  Google Scholar 

  26. J. Noth, M. Schwarz, K. Podoll, and F. Motamedi, “Evidence that low-threshold muscle afferents evoke long-latency stretch reflexes in human hand muscles,” J. Neurophysiol., 65, 1089-1097 (1991).

    PubMed  CAS  Google Scholar 

  27. E. V. Evarts and R. Granit, “Relations of reflexes and intended movements,” Prog. Brain Res., 44, 1-14 (1976).

    Google Scholar 

  28. E. V. Evarts and J. Tanji, “Reflex and intended responses in motor cortex pyramidal tract neurons of monkey,” J. Neurophysiol., 39, 1069-1080 (1976).

    PubMed  CAS  Google Scholar 

  29. A. J. Suminski, S. M. Rao, K. M. Mosier, and R. A. Scheidt, “Neural and electromyographic correlates of wrist posture control,” J. Neurophysiol., 97, 1527-1545 (2007).

    PubMed  Article  Google Scholar 

  30. C. Capaday, R. Fraser, R. Forget, and Y. Lamarre, “Evidence for a transcortical stretch reflex from the study of patients with mirror movements,” Soc. Neurosci. Abstr., 15, 74.13 (1989).

    Google Scholar 

  31. H. Morita, N. Petersen, L. O. D. Christensen, et al., “Sensitivity of H-reflexes and stretch reflexes to presynaptic inhibition in humans,” J. Neurophysiol., 80, No. 2, 610-620 (1998).

    PubMed  CAS  Google Scholar 

  32. G. Lewis, M. Polych, and W. Byblow, “Proposed cortical and sub-cortical contributions to the long-latency stretch reflex in the forearm,” Exp. Brain Res., 156, No. 1, 72-79 (2004).

    PubMed  Article  Google Scholar 

  33. G. N. Lewis, C. D. MacKinnon, and E. J. Perreault, “The effect of task instruction on the excitability of spinal and supraspinal reflex pathways projecting to the biceps muscle,” Exp. Brain Res., 174, No. 3, 413-425 (2006).

    PubMed Central  PubMed  Article  Google Scholar 

  34. P. W. Hodges and B. H. Bui, “A comparison of computer-based methods for the determination of onset of muscle contraction using electromyography,” Electroencephalogr. Clin. Neurophysiol., 101, 511-519 (1996).

    Google Scholar 

  35. J. V. Jacobs, S. M. Henry, S. L. Jones, et al., “A history of low back pain associates with altered electromyographic activation patterns in response to perturbations of standing balance,” J. Neurophysiol., 106, 2506-2514 (2011).

    PubMed Central  PubMed  Article  Google Scholar 

  36. P. H. Strutton, S. Theodorou, M. Catley, et al., “Corticospinal excitability in patients with chronic low back pain,” J. Spinal Disord. Tech., 18, No. 5, 420-424 (2005).

    PubMed  Article  Google Scholar 

  37. J. L. Taylor, J. E. Butler, G. M. Allen, and S. C. Gandevia, “Changes in motor cortical excitability during human muscle fatigue,” J. Neurophysiol., 490, Part 2, 519-528 (1996).

    Google Scholar 

  38. J. B. Pitcher and T. S. Miles, “Alterations in corticospinal excitability with imposed vs. voluntary fatigue in human hand muscles,” J. Appl. Physiol., 92, No. 5, 2131-2138 (2002).

    PubMed  Google Scholar 

  39. A. Radebold, J. Cholewicki, G. K. Polzhofer, and H. S. Greene, “Impaired postural control of the lumbar spine is associated with delayed muscle response times in patients with chronic idiopathic low back pain,” Spine, 26, No. 7, 724-730 (2001).

    PubMed  Article  CAS  Google Scholar 

  40. S. H. Roy, C. J. De Luca, and D. A. Casavant, “Lumbar muscle fatigue and chronic lower back pain,” Spine, 14, No. 9, 992-1001 (1989).

    PubMed  Article  CAS  Google Scholar 

  41. B. M. Wand, L. Parkitny, N. E. O’Connell, et al., “Cortical changes in chronic low back pain: current state of the art and implications for clinical practice,” Man. Ther., 16, No. 1, 15-20 (2011).

    PubMed  Article  Google Scholar 

  42. H. Tsao, M. P. Galea, and P. W. Hodges, “Reorganization of the motor cortex is associated with postural control deficits in recurrent low back pain,” Brain, 131, No. 8, 2161-2171 (2008).

    PubMed  Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sh. Shenoy, H. Balachander or J. S. Sandhu.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shenoy, S., Balachander, H. & Sandhu, J.S. Effect of Prior Instructions on Preprogrammed Reactions of Trunk Muscles in Individuals with and without Chronic Low Back Pain. Neurophysiology 46, 64–70 (2014). https://doi.org/10.1007/s11062-014-9407-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11062-014-9407-8

Keywords

  • preprogrammed muscle reactions
  • chronic low back pain
  • prior instructions
  • electromyography
  • trunk muscles