Advertisement

Neurophysiology

, Volume 45, Issue 5–6, pp 433–440 | Cite as

Stimulation of CB1 Cannabinoid and NMDA Receptors Increases Neuroprotective Effect against Diazinon-Induced Neurotoxicity

  • F. Bahrami
  • M. HashemiEmail author
  • F. Khalili
  • J. Hashemi
  • A. Asgari
Article

Cannabinoids have been shown to exert a neuroprotective influence in organophosphorus-induced toxicity. In our study, we examined the effects of the cannabinoid receptor agonist WIN55,212-2 and NMDA receptor agonist NMDA on cell death in the pheochromocytoma cell line PC12 subjected to the action of an organophosphorus compound, diazinon. Diazinon decreased cell viability in a concentration-dependent manner. Following the exposure of PC12 cells to 200 μM diazinon for 48 h, reductions in cell survival and protein level of CB1 receptors were observed. Treatment of the cells with 0.1 μM WIN55,212-2 and 100 μM NMDA prior to diazinon exposure significantly elevated the cell survival level and protein level of CB1 receptors. The cannabinoid antagonist AM251 (1 μM) did not inhibit the neuroprotection effect induced by WIN55,212-2, indicating that the neuroprotective effect of this agonist was cannabinoid receptor-independent. The NMDA receptor antagonist MK-801 (1 μM) enhanced diazinon-mediated neurotoxicity suggesting that precisely NMDA receptors may play a protective role.

Keywords

cannabinoids diazinon neuroprotection neurotoxicity PC12 cells viability 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. J. Garfitt, K. Jones, H. J. Mason, and J. Cocker, “Exposure to the organophosphate diazinon: data from a human volunteer study with oral and dermal doses,” Toxicol. Let., 134, Nos. 1/3, 105-113 (2002).CrossRefGoogle Scholar
  2. 2.
    H. Mehrani and L. Golmanesh, “Changes in mRNA and protein levels of nicotinic acetylcholine receptors in Diazoxon-exposed PC12 cells,” Toxicol. in vitro, 22, No. 5, 1257-1263 (2008).PubMedCrossRefGoogle Scholar
  3. 3.
    T. L. Lassiter, E. A. MacKillop, I. T. Ryde, et al., “Is fipronil safer than chlorpyrifos? Comparative developmental neurotoxicity modeled in PC12 cells,” Brain Res. Bull., 78, No. 6, 313-322 (2009).PubMedCentralPubMedCrossRefGoogle Scholar
  4. 4.
    S. Sadri, F. Bahrami, M. Khazaei, et al., “Cannabinoid receptor agonist WIN55,212-2 protects differentiated PC12 cells from organophosphorus-induced apoptosis,” Int. J. Toxicol., 29, No. 2, 201-208 (2010).PubMedCrossRefGoogle Scholar
  5. 5.
    J. Flaskos, W. Harris, M. Sachana, et al., “The effects of diazinon and cypermethrin on the differentiation of neuronal and glial cell lines,” Toxicol. Appl. Pharmacol., 219, Nos. 2/3, 172-180 (2007).PubMedCrossRefGoogle Scholar
  6. 6.
    E. Nocerino, M. Amato, and A. A. Izzo, “Cannabis and cannabinoid receptor,” Fitoterapia, 71, S6-S12 (2000).PubMedCrossRefGoogle Scholar
  7. 7.
    I. Svízenská, P. Dubový, and A. Sulcová, “Cannabinoid receptors 1 and 2 (CB1 and CB2), their distribution, ligands and functional involvement in nervous system structures – a short review,” Pharmacol. Biochem. Behav., 90, No. 4, 501-511 (2008).PubMedCrossRefGoogle Scholar
  8. 8.
    D. Baker, G. Pryce, G. Giovannoni, and A. J. Thompson, “The therapeutic potential of Cannabis,” Lancet Neurol., 2, No. 5, 291-298 (2003).PubMedCrossRefGoogle Scholar
  9. 9.
    B. G. Ramírez, C. Blázquez, T. Gómez del Pulgar, et al., “Prevention of Alzheimer’s disease pathology by cannabinoids: neuroprotection mediated by blockade of microglial activation,” J. Neurosci., 25, No. 8, 1904-1913 (2005).PubMedCrossRefGoogle Scholar
  10. 10.
    M. Hashemi, F. Bahrami, H. Sahraei, et al., “The neuroprotective effect of cannabinoid receptor agonist (WIN55,212-2) in paraoxon induced neurotoxicity in PC12 cells and N-methyl-D-aspartate receptor interaction,” Cell J., 12, No. 2, 183-190 (2010).Google Scholar
  11. 11.
    C. Sommer, M. Schomacher, C. Berger, et al., “Neuroprotective cannabinoid receptor antagonist SR141716-A prevents downregulation of excitotoxic NMDA receptors in the ischemic penumbra,” Acta Neuropathol., 112, No. 3, 277-286 (2006).PubMedCrossRefGoogle Scholar
  12. 12.
    J.G. Barbara, N. Auclair, M. P. Roisin, et al., “Direct and indirect interactions between cannabinoid CB1 receptor and group ΙΙ metabotropic glutamate receptor signaling in layer V pyramidal neurons from the rat prefrontal cortex,” Eur. J. Neurosci., 17, No. 5, 981-990 (2003).PubMedCrossRefGoogle Scholar
  13. 13.
    F. Boscia, F. Ferraguti, F. Moroni, et al., “mGlu1α receptors are co-expressed with CB1 receptors in a subset of interneurons in the CA1 region of organotypic hippocampal slice cultures and adult rat brain,” Neuropharmacology, 55, No. 4, 428-439 (2008).PubMedCrossRefGoogle Scholar
  14. 14.
    K. P. Sarker, and I. Maruyama, “Anandamide induces cell death independently of cannabinoid receptors or vanilloid receptor 1: possible involvement of lipid rafts,” Cell. Mol. Life Sci., 60, No. 6, 1200-1208 (2003).PubMedGoogle Scholar
  15. 15.
    G. J. Molderings, H. Bönisch, R. Hammermann, et al., “Noradrenaline release-inhibiting receptors on PC12 cells devoid of α2 and CB1 receptors: similarities to presynaptic imidazoline and EDG receptors,” Neurochem. Int. 40, No. 2, 157-167 (2002).PubMedCrossRefGoogle Scholar
  16. 16.
    M. Casado, A. López-Guajardo, B. Mellström, et al., “Functional N-methyl-D-aspartate receptors in clonal rat pheochromocytoma cells,” J. Physiol., 490, No. 2, 391-404 (1996).PubMedGoogle Scholar
  17. 17.
    M. M. Bradford, “A rapid and sensitive method for quantitation of microgram quantities of protein utilizing the principle of protein-dye binding,” Anal. Biochem., 72, 248-254 (1976).PubMedCrossRefGoogle Scholar
  18. 18.
    F. Bahrami, M. Yousefpour, H. Mehrani, et al., “Type of cell death and the role of acetylcholinesterase activity in neurotoxicity induced by paraoxon in cultured rat hippocampal neurons,” Acta Biol. Hung., 60, No. 1, 1-13 (2009).PubMedCrossRefGoogle Scholar
  19. 19.
    T. A. Slotkin and F. J. Seidler, “Developmental neurotoxicants target differentiation into the serotonin phenotype: chlorpyrifos, diazinon, dieldrin and divalent nickel,” Toxicol. Appl. Pharmacol., 233, No. 2, 211-219 (2008).PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    J. Chen, C. Lee, S. Errico, et al., “Protective effects of Δ9-tetrahydrocannabinol against N-methyl-D-aspartateinduced AF5 cell death,” Mol. Brain Res., 134, No. 2, 215-225 (2005).PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    T. Iuvone, G. Esposito, R. Esposito, et al., “Neuroprotective effect of cannabidiol, a non-psychoactive component from Cannabis sativa, on β-amyloid-induced toxicity in PC12 cells,” J. Neurochem., 89, No. 1, 134-141 (2004).PubMedCrossRefGoogle Scholar
  22. 22.
    D. Fernández-López, J. Martínez-Orgado, E. Nuñez, et al., “Characterization of the neuroprotective effect of the cannabinoid agonist WIN55,212-2 in an in vitro model of hypoxic-ischemic brain damage in newborn rats,” Pediatr. Res., 60, No. 2, 169-173 (2006).PubMedCrossRefGoogle Scholar
  23. 23.
    B. S. Harvey, K. S. Ohlsson, J. L. Mååg, et al., “Contrasting protective effects of cannabinoids against oxidative stress and amyloid-b evoked neurotoxicity in vitro,” Neurotoxicology, 33, No. 1, 138-146 (2012).PubMedCrossRefGoogle Scholar
  24. 24.
    T. Gomes del Pulgar, G. Velasco, and M. Guzmán, “The CB1 cannabinoid receptor is coupled to the activation of protein kinaseB/Akt,” Biochem. J., 347, No. 2, 369-373 (2000).CrossRefGoogle Scholar
  25. 25.
    M. Guzmán, C. Sánchez, and I. Galve-Roperh, “Cannabinoids and cell fate,” Pharmacol. Therapeut., 95, No. 2, 175-184 (2002).CrossRefGoogle Scholar
  26. 26.
    M. Widmer, C. O. Hanemann, and J. Zajicek, “High concentrations of cannabinoids activate apoptosis in human U373MG glioma cells,” J. Neurosci. Res., 86, No. 14, 3212-3220 (2008).PubMedCrossRefGoogle Scholar
  27. 27.
    V. See, A. L. Boutillier, H. Bito, and J. P. Loeffler, “Calcium/calmodulin dependent protein kinase type IV (CaMKIV) inhibits apoptosis induced by potassium deprivation in cerebellar granule neurons,” FASEB. J., 15, No. 1, 134-144 (2001).PubMedCrossRefGoogle Scholar
  28. 28.
    X. Xifro, A. Falluel-Morel, A. Minano, et al., “N-methyl-D-aspartate blocks activation of JNK and mitochondrial apoptotic pathway induced by potassium deprivation in cerebellar granule cells,” J. Biol. Chem., 281, No. 10, 6801-6812 (2006).PubMedCrossRefGoogle Scholar
  29. 29.
    D. Jantas and W. D. Lason, “Different mechanisms of NMDA mediated protection against neuronal apoptosis: a stimuli-dependent effect,” Neurochem. Res., 34, No. 11, 2040-2054 (2009).PubMedCrossRefGoogle Scholar
  30. 30.
    J. Singh and G. Kaur, “Neuroprotection mediated by subtoxic dose of NMDA in SH-SY5Y neuroblastoma cultures: activity dependent regulation of PSA-NCAM expression,” Brain Res. Mol., 137, Nos. 1/2, 223-234 (2005).CrossRefGoogle Scholar
  31. 31.
    C. C. Wang, R. G. Held, S. C. Chang, et al., “A critical role for GluN2B-containing NMDA receptors in cortical development and function,” Neuron, 72, No. 5, 789-805 (2011).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • F. Bahrami
    • 1
  • M. Hashemi
    • 4
    Email author
  • F. Khalili
    • 2
  • J. Hashemi
    • 1
  • A. Asgari
    • 3
  1. 1.Neuroscience Research CenterBaqiyatallah University of Medical SciencesTehranIran
  2. 2.Molecular Biology Research CenterProteomic Division, Baqiyatallah University of Medical SciencesTehranIran
  3. 3.Physiology and Biophysics DepartmentBaqiyatallah University of Medical SciencesTehranIran
  4. 4.Tehran University of Medical Sciences, School of Advanced Technologies in MedicineTehranIran

Personalised recommendations