Skip to main content

Advertisement

Log in

Mitochondrial Dysfunction and Molecular Bases of Neurodegenerative Diseases

  • REVIEWS
  • Published:
Neurophysiology Aims and scope

This paper reviews the published data of modern studies, which allow one to summarize the accumulated knowledge on the molecular mechanisms underlying the development of some neurodegenerative diseases and the role of disorders of these mechanisms in the pathogenesis of diseases directly related to the impairments of mitochondrial functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. I. Shadrina and P. A. Slominskii, “Importance of mitochondrial dysfunction and oxidizing injuries in molecular pathology of Parkinson’s disease,” Mol.. Biol., 42, 809–819 (2008).

    CAS  Google Scholar 

  2. J.-L. Yang, L. Weissman, V. Bohr, and M. P. Mattson, “Mitochondrial DNA damage and repair in neurodegenerative disorders,” DNA Repair, 7, 1110–1120 (2008).

    PubMed  CAS  Google Scholar 

  3. S. N. Illarioshkin, “Primary and secondary mitochondrial insufficiency in neurology and approaches for its correction,” Cons. Med., 9, 105–106 (2007).

    Google Scholar 

  4. A. B. Knott and E. Bossy-Wetzel, “Impairing the mitochondrial fission and fusion balance: a new mechanism of neurodegeneration,” Ann. N.Y. Acad. Sci., 1147, 283–292 (2008).

    PubMed  CAS  Google Scholar 

  5. P. I. Moreira, X. Zhu, X. Wang, et al., “Mitochondria: A therapeutic target in neurodegeneration,” Biochim. Biophys. Acta, 1802, 212–220 (2010).

    PubMed  CAS  Google Scholar 

  6. A. Eckert, K. Schmidtt, and J. Gotz, “Mitochondrial dysfunction – the beginning of the end in Alzheimer’s disease? Separate and synergistic models of tau and amyloid-β toxicity,” Alzheimer’s Res. Ther., 3, 15 (2011).

    CAS  Google Scholar 

  7. H. Chen, M. Vermulst, Y. E. Wang, et al., “Mitochondrial fusion is required for mtDNA stability in skeletal muscle and tolerance of mtDNA mutation,” Cell, 141, 280–289 (2010).

    PubMed  CAS  Google Scholar 

  8. T. Ono, K. Isobe, K. Nakada, and J. I. Hayashi, “Human cells are protected from mitochondrial dysfunction by complementation of DNA products in fused mitochondria,” Nat. Genet., 28, 272–275 (2001).

    PubMed  CAS  Google Scholar 

  9. G. Attardi and G. Schatz, “Biogenesis of mitochondria,” Annu. Rev. Cell Biol., 4, 289–333 (1988).

    PubMed  CAS  Google Scholar 

  10. M. Westerlund, B. Hoffer, and L. Olson, “Parkinson’s disease: Exit toxins, enter genetics,” Prog. Neurobiol., 90, 16–156 (2010).

    Google Scholar 

  11. G. N. Kryzhanovskii, I. N. Karaban’, S. V. Magayeva, et al., Parkinson’s Disease [in Russian], Meditsina, Moscow (2002).

  12. L. R. Feng and K. A. Maguire-Zeiss, “Gene therapy in Parkinson’s disease: rationale and current status,” CNS Drugs, 24, 177–192 (2010).

    PubMed  CAS  Google Scholar 

  13. H. Braak, E. Ghebremedhin, U. Rub, et al., “Stages at the pathology in the development of Parkinson’s disease-related pathology,” Cell Tissue Res., 318, 121–134 (2004).

    PubMed  Google Scholar 

  14. A. Bender, K. J. Krishnan, C. M. Morris, et al., “High levels of mitochondrial DNA deletions in substantia nigra neurons in aging and Parkinson disease,” Nat. Genet., 38, 515–517 (2006).

    PubMed  CAS  Google Scholar 

  15. B. Thomas and M. F. Beal, “Parkinson’s disease,” Human Mol. Genet., 16, R183-R194 (2007).

    CAS  Google Scholar 

  16. M. I. Ekstrand, M. Terzioglu, M. P. Dunne, et al., “Progressive parkinsonism in mice with respiratory chain-deficient dopamine neurons,” Proc. Natl. Acad. Sci. USA, 104, 1325–1330 (2007).

    PubMed  CAS  Google Scholar 

  17. L. Devi, V. Raghavendran, B. M. Prabhu, et al., “Mitochondrial import and accumulation of alphasynuclein impair complex I in human dopaminergic neuronal cultures and Parkinson disease brain,” J. Biol. Chem., 283, 9089–9100 (2008).

    PubMed  CAS  Google Scholar 

  18. Y. Kuroda, T. Mitsui, M. Kunishige, et al., “Parkin enhances mitochondrial biogenesis in proliferating cells,” Human Mol. Genet., 15, 883–895 (2006).

    CAS  Google Scholar 

  19. J. M. Savitt, V. L. Dawson, and T. M. Dawson, “Diagnosis and treatment of Parkinson disease: molecules to medicine,” J. Clin. Invest., 116, 174–1754 (2006).

    Google Scholar 

  20. A. Wood-Kaczmar, S. Gandhi, Z. Yao, et al., “PINK1 is necessary for long-term survival and mitochondrial function in human dopaminergic neurons,” PLoS One, 3, e2455 (2008).

    PubMed  Google Scholar 

  21. C. A. Gautier, T. Kitada, and J. Shen, “Loss of PINK1 causes mitochondrial functional defects and increased sensitivity to oxidative stress,” Proc. Natl. Acad. Sci. USA, 105, 11364–11369 (2008).

    PubMed  CAS  Google Scholar 

  22. C. Wang, R. Lu, X. Ouyang, et al., “Drosophila overexpressing parkin R275W mutant exhibits dopaminergic neuron degeneration and mitochondrial abnormalities,” J. Neurosci., 27, 8563–8570 (2007).

    PubMed  CAS  Google Scholar 

  23. H. Deng, M. W. Dodson, H. Huang, and M. Guo, “The Parkinson’s disease genes pink1 and parkin promote mitochondrial fission and/or inhibit fusion in Drosophila,” Proc. Natl. Acad. Sci. USA, 105, 14503–14508 (2008).

    PubMed  CAS  Google Scholar 

  24. A. C. Poole, R. E. Thomas, L. A. Andrews, et al., “The PINK1/Parkin pathway regulates mitochondrial morphology,” Proc. Natl. Acad. Sci. USA, 105, 1638–1643 (2008).

    PubMed  CAS  Google Scholar 

  25. H. Chen and D. C. Chan, “Mitochondrial dynamics – fusion, fission, movement and mitofagy – in neurodegenerative diseases,” Human Mol. Genet., 18, R169-R176 (2009).

    CAS  Google Scholar 

  26. B. L. Tang, “Neuronal protein trafficking associated with Alzheimer disease,” Cell Adhes. Migrat., 3, 118–128 (2009).

    Google Scholar 

  27. C. P. Ferri, M. Prince, C. Brayne, et al., “Alzheimer’s disease international. Global prevalence of dementia: a Delphi consensus study,” Lancet, 366, 2112–2117 (2005).

    PubMed  Google Scholar 

  28. K. Hirai, G. Aliev, A. Nunomura, et al., “Mitochondrial abnormalities in Alzheimer’s disease,” J. Neurosci., 21, 3017–3023 (2001).

    PubMed  CAS  Google Scholar 

  29. M. Manczak, T. S. Anekonda, E. Henson, et al., “Mitochondria are a direct site of A beta accumulation in Alzheimer’s disease neurons: implications for free radical generation and oxidative damage in disease progression,” Human Mol. Genet., 15, 1437–1449 (2006).

    CAS  Google Scholar 

  30. Y. Zhang, R. McLaughlin, C. Goodyear, and A. LeBlanc, “Selective cytotoxicity of intracellular amyloid-β peptide 1–42 through p53 and Bax in cultured primary human neurons,” J. Cell Biol., 156, 519–529 (2002).

    PubMed  CAS  Google Scholar 

  31. W. Kim and M. H. Hecht, “Sequence determinants of enhanced amyloidogenicity of Alzheimer Aβ42 peptide relative to Aβ40,” J. Biol. Chem., 280, 35069–35076 (2005).

    PubMed  CAS  Google Scholar 

  32. J. W. Lustbader, M. Cirilli, C. Lin, et al., “ABAD directly links Abeta to mitochondrial toxicity in Alzheimer’s disease,” Science, 304, 448–452 (2004).

    PubMed  CAS  Google Scholar 

  33. P. F. Pavlov, C. Hansson Petersen, E. Glaser, and M. Ancarkrona, “Mitochondrial accumulation of APP and Abeta: significance for Alzheimer’s disease pathogenesis,” J. Cell. Mol. Med., 13, 4137–4145 (2009).

    PubMed  CAS  Google Scholar 

  34. C. Czesh, G. Tremp, and L. Pradier, “Presenilins and Alzheimer’s disease: biological functions and pathogenic mechanism,” Prog. Neurobiol., 60, 363–384 (2000).

    Google Scholar 

  35. A. Kowalska, “Amyloid precursor protein gene mutations responsible for early-onset autosomal dominant Alzheimer’s disease,” Folia Neuropathol., 41, 35–40 (2003).

    PubMed  CAS  Google Scholar 

  36. K. Duff, C. Eckman, C. Zehr, et al., “Increased amyloid-β42(43) in brains of mice expressing mutant presenilin 1,” Nature, 383, 710–713 (1996).

    PubMed  CAS  Google Scholar 

  37. M. Citron, D. Westaway, W. Xia, et al., “Mutant presenilins of Alzheimer’s disease increase production of 42-residue amyloid beta-protein in both transfected cells and transgenic mice,” Nat. Med., 3, 67–72 (1997).

    PubMed  CAS  Google Scholar 

  38. M. Corral-Debrinski, T. Horton, M. T. Lott, et al., “Marked changes in mitochondrial DNA deletion levels in Alzheimer’s brain,” Genomics, 23, 471–476 (1994).

    PubMed  CAS  Google Scholar 

  39. X. Wang, B. Su, H. G. Lee, et al., “Impaired balance of mitochondrial fission and fusion in Alzheimer’s disease,” J. Neurosci., 29, 9090–9103 (2009).

    PubMed  CAS  Google Scholar 

  40. X. Wang, B. Su, S. L. Siedlak, et al., “Amyloidbeta overproduction causes abnormal mitochondrial dynamics via differential modulation of mitochondrial fission/fusion proteins,” Proc. Natl. Acad. Sci. USA, 105, 19318–19323 (2008).

    PubMed  CAS  Google Scholar 

  41. W. D. Parker, Jr., C. M. Filley, and J. K. Parks, “Cytochrome oxidase deficiency in Alzheimer’s disease,” Neurology, 40, 1302–1303 (1990).

    PubMed  Google Scholar 

  42. G. E. Gibson, K. F. Sheu, and J. P. Blass, “Abnormalities of mitochondrial enzymes in Alzheimer disease,” J. Neural Transm., 105, 855–870 (1998).

    PubMed  CAS  Google Scholar 

  43. J. P. Blass, “Cerebrometabolic abnormalities in Alzheimer’s disease,” Neurol. Res., 25, 556–566 (2003).

    PubMed  CAS  Google Scholar 

  44. S. J. Kish, C. Bergeron, A. Rajput, et al., “Brain cytochrome oxidase in Alzheimer’s disease,” J. Neurochem., 59, 776–779 (1992).

    PubMed  CAS  Google Scholar 

  45. S. M. Cardoso, M. T. Proenca, S. Santos, et al., “Cytochrome c oxidase is decreased in Alzheimer’s disease platelets,” Neurobiol. Aging, 25, 105–110 (2004).

    PubMed  CAS  Google Scholar 

  46. R. A. Quintanilla and G. V. W. Johnson, “Role of mitochondrial dysfunction in the pathogenesis of Huntington’s disease,” Brain Res. Bull., 80, 242–247 (2009).

    PubMed  CAS  Google Scholar 

  47. E. Bonilla, “Huntington disease. A review,” Invest. Clin., 41, 117–141 (2000).

    PubMed  CAS  Google Scholar 

  48. E. Perez-Navarro, J. M. Canals, S. Gines, and J. Alberch, “Cellular and molecular mechanisms involved in the selective vulnerability of striatal projection neurons in Huntington disease,” Histol. Histopathol., 21, 1217–1232 (2006).

    PubMed  CAS  Google Scholar 

  49. M. DiFiglia, E. Sapp, K. O. Chase, et al., “Aggregation of huntingtin in neuronal intranuclear inclusions and dystrophic neuritis in brain,” Science, 277, 1990–1993 (1997).

    PubMed  CAS  Google Scholar 

  50. V. Macdonald and G. Halliday, “Pyramidal cell loss in motor cortices in Huntington’s disease,” Neurobiol. Dis., 10, 378–386 (2002).

    PubMed  Google Scholar 

  51. S. H. Li and X. J. Li, “Huntingtin-protein interactions and the pathogenesis of Huntington’s disease,” Trends Genet., 20, 146–154 (2004).

    PubMed  Google Scholar 

  52. T. Ashizawa, L. J. Wong, C. S. Richards, et al., “CAG repeat size and clinical presentation in Huntington’s disease,” Neurology, 44, 1137–1143 (1997).

    Google Scholar 

  53. R. H. Myers, J. P. Vonsatell, T. J. Stevens, et al., “Clinical and neuropathologic assessment of severity of Huntington’s disease,” Neurology, 38, 341–347 (1988).

    PubMed  CAS  Google Scholar 

  54. G. B. Landwehrmeyer, D. G. Standaert, C. M. Testa, et al., “NMDA receptor subunit mRNA expression by projection neurons and interneurons in rat striatum,” J. Neurosci., 15, 5297–5307 (1995).

    PubMed  CAS  Google Scholar 

  55. B. G. Jenkins, W. J. Koroshetz, M. F. Beal, and B. R. Rosen, “Evidence for impairment of energy metabolism in vivo in Huntington’s disease using localized 1H NMR spectroscopy,” Neurology, 43, 2689–2695 (1993).

    PubMed  CAS  Google Scholar 

  56. R. Lodi, A. H. Schapira, D. Manners, et al., “Abnormal in vivo skeletal muscle energy metabolism in Huntington’s disease and dentatorubropallidoluysian atrophy,” Ann. Neurol., 48, 72–76 (2000).

    PubMed  CAS  Google Scholar 

  57. M. Gu, M. T. Gash, V. M. Mann, et al., “Mitochondrial defect in Huntington’s disease caudate nucleus,” Ann. Neurol., 39, 385–389 (1996).

    PubMed  CAS  Google Scholar 

  58. S. J. Tabrizi, M. W. Cleeter, J. Xuereb, et al., “Biochemical abnormalities and excitotoxicity in Huntington’s disease brain,” Ann. Neurol., 45, 25–32 (1999).

    PubMed  CAS  Google Scholar 

  59. A. H. Schapira, “Mitochondrial involvement in Parkinson’s disease, Huntington’s disease, hereditary spastic paraplegia and Friedreich’s ataxia,” Biochim. Biophys. Acta, 1410, 159–170 (1999).

    PubMed  CAS  Google Scholar 

  60. M. F. Beal, E. Brouilett, B. G. Jenkins, et al., “Neurochemical and histological characterization of striatal excitotoxic lesions produced by the mitochondrial toxin 3-nitropropionic acid,” J. Neurosci., 13, 4181–4192 (1993).

    PubMed  CAS  Google Scholar 

  61. E. Brouilett, P. Hantraye, R. J. Ferrante, et al., “Chronic mitochondrial energy impairment produces selective striatal degeneration and abnormal choreiform movements in primates,” Proc. Natl. Acad. Sci. USA, 92, 7105–7109 (1995).

    Google Scholar 

  62. A. Sawa, G. W. Wiegand, J. Cooper, et al., “Increased apoptosis of Huntington’s disease lymphoblasts associated with repeat length-dependent mitochondrial depolarization,” Nat. Med., 5, 1194–1198 (1999).

    PubMed  CAS  Google Scholar 

  63. A. V. Panov, C. A. Gutekunst, B. R. Leavitt, et al., “Early mitochondrial calcium defects in Huntington’s disease are direct effects of polyglutamines,” Nat. Neurosci., 5, 731–736 (2002).

    PubMed  CAS  Google Scholar 

  64. R. Luthi-Carter, A. Strand, N. L. Peters, et al., “Decreased expression of striatal signaling genes in a mouse model of Huntington’s disease,” Human Mol. Genet., 9, 1259–1271 (2000).

    CAS  Google Scholar 

  65. L. Cui, H. Jeong, F. Borovecki, et al., “Transcriptional repression of PGC-1alpha by mutant huntingtin leads to mitochondrial dysfunction and neurodegeneration,” Cell, 127, 59–69 (2006).

    PubMed  CAS  Google Scholar 

  66. D. Rigamonti, S. Sipione, D. Goffredo, et al., “Huntingtin’s neuroprotective activity occurs via inhibition of procaspase-9 processing,” J. Biol. Chem., 276, 14545–14548 (2001).

    PubMed  CAS  Google Scholar 

  67. T. Kiechle, A. Dedeoglu, J. Kibulis, et al., “Cytochrome c and caspase-9 expression in Huntington’s disease,” Neuromol. Med., 1, 183–195 (2002).

    CAS  Google Scholar 

  68. R. E. P. Sica, A. F. De Nicola, M. C. Gonzalez Deniselle, et al., “Sporadic amyotrophic lateral sclerosis,” Arq. Neuro-psiquiat., 69, 699–706 (2011).

    Google Scholar 

  69. M. Katsuno, F. Tanaki, and G. Sobue, “Perspectives on molecular targeted therapies and clinical trials for neurodegenerative diseases,” J. Neurol., Neurosurg., Psychiat., 83, 329–335 (2012).

    Google Scholar 

  70. B. J. Carter, P. Anklesaria, S. Choi, and J. F. Engelhardt, “Redox modifier genes and pathways in amyotrophic lateral sclerosis,” Antioxidants Redox Signal., 11, 1569–1586 (2009).

    CAS  Google Scholar 

  71. S. Cluskey and D. B. Ramsden, “Mechanisms of neurodegeneration in amyotrophic lateral sclerosis,” J. Clin. Pathol.: Mol. Pathol., 54, 386–392 (2001).

    CAS  Google Scholar 

  72. P. J. Shaw and C. J. Eggett, “Molecular factors underlying selective vulnerability of motor neurons to neurodegeneration in amyotrophic lateral sclerosis,” J. Neurol., 247, 17–27 (2000).

    Google Scholar 

  73. A. G. Reaume, J. L. Elliott, E. K. Hoffmann, et al., “Motor neurons in Cu/Zn superoxide dismutase-deficient mice develop normally but exhibit enhanced death after axonal injury,” Nat. Genet., 13, 43–47 (1996).

    PubMed  CAS  Google Scholar 

  74. M. C. Kiernan, S. Vucic, B. C. Cheah, et al., “Amyotrophic lateral sclerosis,” Lancet, 377, 942–955 (2011).

    PubMed  CAS  Google Scholar 

  75. J. Magrane and G. Manfredi, “Mitochondrial function, morphology, and axonal transport in amyotrophic lateral sclerosis,” Antioxidants Redox Signal., 11, 1615–1626 (2009).

    CAS  Google Scholar 

  76. S. Sasaki and M. Iwata, “Mitochondrial alterations in the spinal cord of patients with sporadic amyotrophic lateral sclerosis,” J. Neuropathol. Exp. Neurol., 66, 10–16 (2007).

    PubMed  Google Scholar 

  77. Y. Nakano, K. Hirayama, and K. Terao, “Hepatic ultrastructural changes and liver dysfunction in amyotrophic lateral sclerosis,” Arch. Neurol., 44, 103–104 (1987).

    PubMed  CAS  Google Scholar 

  78. F. R. Weidemann, K. Winkler, A. V. Kuznetsov, et al., “Impairment of mitochondrial function in skeletal muscles of patients with amyotrophic lateral sclerosis,” J. Neurol. Sci., 156, 65–72 (1998).

    Google Scholar 

  79. D. Curti, A. Malaspina, G. Facchetti, et al., “Amyotrophic lateral sclerosis: oxidative energy metabolism and calcium homeostasis in peripheral blood lymphocytes,” Neurology, 47, 1060–1064 (1996).

    PubMed  CAS  Google Scholar 

  80. M. C. Dal Canto and M. E. Gurney, “Neuropathological changes in two lines of mice carrying transgene for mutant human Cu, Zn SOD and in mice overexpressing wild-type human SOD: a model of familial amyotrophic lateral sclerosis (FALS),” Brain Res., 676, 25–40 (1995).

    PubMed  CAS  Google Scholar 

  81. P. C. Wong, C. A. Pardo, D. R. Borchelt, et al., “An adverse property of a familial ALS-linked SOD1 mutation causes motor neuron disease characterized by vacuolar degeneration of mitochondria,” Neuron, 14, 1105–1116 (1995).

    PubMed  CAS  Google Scholar 

  82. T. W. Gould, R. R. Buss, S. Vinsant, et al., “Complete dissociation of motor neuron death from motor dysfunction by Bax deletion in a mouse model of ALS,” J. Neurosci., 26, 8774–8786 (2006).

    PubMed  CAS  Google Scholar 

  83. K. E. Miller and M. P. Sheetz, “Axonal mitochondrial transport and potential are correlated,” J. Cell Sci., 117, 2791–2804 (2004).

    PubMed  CAS  Google Scholar 

  84. D. Jaarsma, F. Rognoni, W. van Duijn, et al., “Cu, Zn superoxide dismutase (SOD1) accumulates in vacuolated mitochondria in transgenic mice expressing amyotrophic lateral sclerosis-linked mutations,” Acta Neuropathol. Berl., 102, 293–305 (2001).

    PubMed  CAS  Google Scholar 

  85. P. Pasinelli, M. E. Belford, N. Lennon, et al., “Amyotrophic lateral sclerosis-associated SOD1 mutant proteins bind and aggregate with Bcl-2 in spinal cord mitochondria,” Neuron, 43, 19–30 (2004).

    PubMed  CAS  Google Scholar 

  86. L. J. Martin, “Neuronal death in amyotrophic lateral sclerosis is apoptosis: possible contribution of programmed cell death mechanism,” J. Neuropathol. Exp. Neurol., 58, 459–471 (1999).

    PubMed  CAS  Google Scholar 

  87. M. F. Beal, “Mitochondria and pathogenesis of ALS,” Brain, 123, 1291–1292 (2000).

    PubMed  Google Scholar 

  88. S. Vielhaber, D. Kunz, K. Winkler, et al., “Mitochondrial DNA abnormalities in skeletal muscle of patients with sporadic amyotrophic lateral sclerosis,” Brain, 123, 1339–1348 (2000).

    PubMed  Google Scholar 

  89. Y. Masui, T. Mozai, and K. Kakehi, “Functional and morphometric study of the liver in motor neuron disease,” J. Neurol., 232, 15–19 (1985).

    PubMed  CAS  Google Scholar 

  90. R. H. Swerdlow, J. K. Parks, D. S. Cassarino, et al., “Mitochondria in sporadic amyotrophic lateral sclerosis,” Exp. Neurol., 153, 135–142 (1998).

    PubMed  CAS  Google Scholar 

  91. S. N. Illarioshkin and M. V. Ershova, “Molecular bases of Friedreich’s disease,” Korsakov Zh. Nevrol. Psikhiat., 2, 61–67 (2003).

    Google Scholar 

  92. M. V. Ershova and S. N. Illarioshkin, “The use of idebenone for correction of mitochondrial pathology in Friedreich’s disease,” Cons. Med., 9, 107 (2007).

    Google Scholar 

  93. D. Kumari and K. Usdin, “Is Friedreich’s ataxia an epigenetic disorder?” Clin. Epigenet., 4, No. 2, doi:10.1187/1868-7083-4-2 (2012).

  94. H. Puccio and M. Koenig, “Recent advances in the molecular pathogenesis of Friedreich’s ataxia,” Human Mol. Genet., 9, 887–892 (2000).

    CAS  Google Scholar 

  95. V. Campuzano, L. Montermini, M. D. Molto, et al., “Friedreich’s ataxia: autosomal recessive disease caused by an intronic GAA triplet repeat explanation,” Science, 271, 1423–1427 (1996).

    PubMed  CAS  Google Scholar 

  96. F. Palau, “Friedreich’s ataxia and frataxin: molecular genetics, evolution and pathogenesis,” Int. J. Mol. Med., 7, 581–589 (2001).

    PubMed  CAS  Google Scholar 

  97. V. Campuzano, L. Montermine, Y. Lutz, et al., “Frataxin is reduced in Friedreich’s ataxia patients and is associated with mitochondrial membranes,” Human Mol. Genet., 6, 1771–1780 (1997).

    CAS  Google Scholar 

  98. A. Rotig, P. de Lonlay, D. Chretien, et al., “Aconitase and mitochondrial iron-sulfur protein deficiency in Friedreich’s ataxia,” Nat. Genet., 17, 215–217 (1997).

    PubMed  CAS  Google Scholar 

  99. H. Koutnikova, V. Campuzano, F. Foury, et al., “Studies of human, mouse and yeast homologues indicate a mitochondrial function of frataxin,” Nat. Genet., 16, 345–351 (1997).

    PubMed  CAS  Google Scholar 

  100. S. Lefevre, D. Sliwa, P. Rustin, et al., “Oxidative stress induces mitochondrial fragmentation in frataxin-deficient cells,” Biochem. Biophys. Commun., 418, 336–341 (2012).

    CAS  Google Scholar 

  101. J. L. Bradley, J. C. Blake, S. Chamberlain, et al., “Clinical, biochemical and molecular genetic correlations in Friedreich’s ataxia,” Human Mol. Genet., 9, 275–282 (2000).

    CAS  Google Scholar 

  102. H.-H. M. Dahl, “Getting to the nucleus of mitochondrial disorders: identification of respiratory chain-enzymes genes causing Leigh syndrome,” Am. J. Human Genet., 63, 1594–1597 (1998).

    CAS  Google Scholar 

  103. V. Procaccio and D. C. Wallace, “Late-onset Leigh syndrome in patients with mitochondrial complex I NDUFS8 mutations,” Neurology, 62, 1899-1901(2004).

    PubMed  Google Scholar 

  104. S. Rahman, R. B. Block, H. H. Dahl, et al., “Leigh syndrome: clinical features and biochemical and DNA abnormalities,” Ann. Neurol., 39, 343–351 (1996).

    PubMed  CAS  Google Scholar 

  105. S. DiMauro and D. C. De Vivo, “Genetic heterogeneity in Leigh syndrome,” Ann. Neurol., 40, 5–7 (1996).

    PubMed  CAS  Google Scholar 

  106. V. Tiranti, K. Hoertnagel, R. Carrozzo, et al., “Mutations of SURF-1 in Leigh disease associated with cytochrome c oxidase deficiency,” Am. J. Human Genet., 63, 1609–1621 (1998).

    CAS  Google Scholar 

  107. J. Loeffen, J. Smeitink, R. Triepels, et al., “The first nuclear-encoded complex I mutation in a patient with Leigh syndrome,” Am. J. Human Genet., 63, 1598–1608 (1998).

    CAS  Google Scholar 

  108. H. A. Tuppen, V. E. Hogan, L. He, et al., “The p.M292T NDUFS2 mutation causes complex I-deficient Leigh syndrome in multiple families,” Brain, 133, 2952–2963 (2010).

    PubMed  Google Scholar 

  109. E. Ostergaard, R. J. Rodenburg, M. van der Brand, et al., “Respiratory chain complex I deficiency due to NDUFA12 mutations as a new cause of Leigh syndrome,” J. Med. Genet., 48, 737–740 (2012).

    Google Scholar 

  110. P. H. Reddy, “Mitochondrial medicine for aging and neurodegenerative diseases,” Neuromol. Med., 10, 291–315 (2008).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. É. Kolesnikova.

Additional information

In memory of Nikolai Karaban’, a Talented Physician and a Romantic of the Sky

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kolesnikova, E.É. Mitochondrial Dysfunction and Molecular Bases of Neurodegenerative Diseases. Neurophysiology 45, 89–102 (2013). https://doi.org/10.1007/s11062-013-9341-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11062-013-9341-1

Keywords

Navigation